Advertisement

Natural Hazards

, Volume 38, Issue 1–2, pp 283–300 | Cite as

Long-term Trends in Vegetation Dynamics and Forest Fires in Brandenburg (Germany) Under a Changing Climate

  • Kirsten Thonicke
  • Wolfgang Cramer
Article

Abstract

The human influence on environmental processes has been described for many types of land use. One of the oldest tools to modify people’s environment is fire, which has dominated fire regimes in many regions over long time scales. This paper focuses on a German case study region, where 80–90% of the fires are human-caused. The objectives of this study are the application of the Regional Fire Model (Reg-FIRM), a process-based fire model that is incorporated into the LPJ Dynamic Global Vegetation Model, to temperate forests under historic climate conditions and to explore ranges of potential impacts of future climate change on fire and vegetation dynamics. Simulation experiments are designed to simulate historic fire pattern and to explore influences of vegetation on fire. Simulated fire pattern reproduced the observed average fire conditions reasonably well although with a smaller amplitude. This leads to underestimation of extreme fire years as well as an overestimation of low fire years. Vegetation composition influenced fire spread conditions in the temperate forest and had little impact on fire ignition potentials, except when only broad-leaved deciduous forests were assumed. Fire is likely to change under climate change conditions. Simulated experiments were conducted to explore the effects of climate change and rising CO2 concentration given the potential natural vegetation as the best-case for Brandenburg. Three GCM scenarios predicting different future climatic changes were applied, and resulted in quantitatively different future fire patterns. Depending on future precipitation pattern and the influence of the CO2 effect on canopy conductance and thus litter moisture, fire was predicted to either decrease or slightly increase in Brandenburg forests, but the burnt area would not exceed current, extreme fire years. Generally, fire changes had no implication for vegetation composition in Brandenburg, but reduced vegetation carbon gain after 2050. In the HadCM3 application, simulated increase in grass cover due to a large burnt area after 2075 accelerated fire spread conditions, thus still increasing the burnt area, while climatic fire danger and number of fires already began to decline. These interactions underline the importance to consider the full range of fire processes and interactions with vegetation dynamics in a simulation model.

Keywords

regional fire model human-caused fires Brandenburg vegetation-fire interaction climate change 

Abbreviations

CSIRO2

The coupled model of the Commonwealth Scientific and Industrial Research Organisation (CSIRO, Australia), version 2.

GCM

General Circulation Model

HadCM3

Hadley Centre Coupled Model, version 3 (United Kingdom Met Office, UKMO, UK)

LPJ-DGVM

Lund-Potsdam-Jena Dynamic Global Vegetation Model

PCM

Parallel Climate Model (National Center for Atmospheric Research, NCAR, USA)

Reg-FIRM

Regional-scale fire model

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badeck, F.-W., Lasch, P., Hauf, Y., Rock, J., Suckow, F. and Thonicke, K.: 2004, Steigendes klimatisches Waldbrandrisiko. AFZ/Der Wald 59(2)Google Scholar
  2. Cubasch, U., Meehl, G.A., Boer, G.J., Stouffer, R.J., Dix, M., Noda, A., Senior, C.A., Raper, S., Yap, K.S. 2001Projections of future climate change, Climate Change 2001Houghton, J.T.Ding, Y.Griggs, D.J.Noguer, M.Linden, P.J.Dai, X.Maskell, K.Johnson, C.A. eds. The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel of Climate ChangeCambridge University PressCambridge, United Kingdom, New York NY, USA525582Google Scholar
  3. Ellsworth, D.S. 1999CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected?Plant Cell Environ.22461472CrossRefGoogle Scholar
  4. Enting, I.G., Wigley, T.M.L., Heimann, M. 1994Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analyses31 CSIRO Division of Atmospheric ResearchAspendale, Victoria, AustraliaGoogle Scholar
  5. FAO1991The Digitized Soil Map of the World (Release 1.0). 67/1Food and Agriculture Organization of the United NationsRome, ItalyGoogle Scholar
  6. Goldammer, J.G., Montag, S., Page, H. 1997Nutzung des Feuers in mittel- uns Nordeuropäischen Landschaften. Geschichte, Methoden, Probleme, Perspektiven.NNA-Berichte101838Google Scholar
  7. Gordon, C., Cooper, C., Senior, C.A., Banks, H.T., Gregory, J.M., Johns, T.C., Mitchell, J.F.B., Wood, R.A. 2000The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Center coupled model without flux adjustmentsClimate Dynamics16147168CrossRefGoogle Scholar
  8. Gordon, H.B., O’Farrell, S.P. 1997Transient climate change in the CSIRO coupled model with dynamic sea iceMonthly Weather Rev.125875907CrossRefGoogle Scholar
  9. Hély, C., Bergeron, Y., Flannigan, M.D. 2000Effects of stand composition on fire hazard in mixed-wood Canadian boreal forestJ. Veget. Sci.11813824Google Scholar
  10. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. 2001Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel of Climate ChangeCambridge University PressCambridge United Kingdom and New York NY USA881Google Scholar
  11. Krausch, H.-D. 1992 Potentielle natürliche Vegetation. Umweltbundesamt (Eds.), Ökologische Ressourcenplanung Berlin und Umland – Planungsgrundlagen. FB 90051 Berlin: Umweltbundesamt (pp. 8)Google Scholar
  12. Lange, S. 2000Waldbrandabwehr im 20.Jahrhundert. Beiträge deutscher Forstleute zur Vorbeugung und BekämpfungForst und Holz55253259Google Scholar
  13. Lasch, P., Badeck, F.-W., Lindner, M., Suckow, F. 2002aSensitivity of simulated forest growth to changes in climate and atmospheric CO2Forstwiss. Centralblatt121155171Google Scholar
  14. Lasch, P., Lindner, M., Ebert, B., Flechsig, M., Gerstengarbe, F.-W., Suckow, F., Werner, P.C. 1999Regional impact analysis of climate change on natural and managed forests in the Federal State of Brandenburg, GermanyEnviron. Modeling Assess.4273286Google Scholar
  15. Lasch, P., Lindner, M., Erhard, M., Suckow, F., Wenzel, A. 2002bRegional impact assessment on forest structure and functions under climate change-the Brandenburg case studyForest Ecol. Manage.1627386Google Scholar
  16. LDS2002Bevölkerung des Landes Brandenburg 1955–2000Landesbetrieb für Datenverarbeitung und Statistik Brandenburg (State Institution for data processing and statistics Brandenburg)GermanyGoogle Scholar
  17. LFE2000Waldbrandstatistik des Landes Brandenburg 1975–1999Landesforstanstalt EberswaldeGermanyGoogle Scholar
  18. Li, J.H., Dugas, W.A., Hymus, G.J., Johnson, D.P., Drake, B.G., Hungate, B.A. 2003Direct and indirect effects of elevated CO2 on transpiration from Quercus myrtifolia in a scrub-oak ecosystemGlobal Change Biol.996105CrossRefGoogle Scholar
  19. Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M. and New, M.: 2004, A comprehensive set of climate scenarios for Europe. Tyndall Centre for Climate Change Research Working Paper 55, 25Google Scholar
  20. MUNR1998Daten zur Umweltsituation im Land BrandenburgMinisterium für Umwelt, Naturschutz und Raumordnung des Landes Brandenburg (MUNR)Potsdam GermanyGoogle Scholar
  21. Pyne, S., Goldammer, J.G. 1997The culture of fire: An introduction to anthropogenic fire historyClark, J.S.Cachier, H.Goldammer, J.G.Stocks, B. eds. Sediment Records of Biomass Burning and Global Change. Series 1: Global Environmental ChangeSpringer VerlagBerlin71114Google Scholar
  22. Pyne, S.J. 1995World Fire, Cycle of FireHenry Holt and CompanyNew York379Google Scholar
  23. Sitch, S.,  et al. 2003Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation ModelGlobal Change Biol.9161185CrossRefGoogle Scholar
  24. Tobler, W., Deichmann, U., Gottsegen, J., Maloy, K. 1995The Global Demography Project, National Center for Geographic Information and AnalysisUniversity of CaliforniaSanta BarbaraGoogle Scholar
  25. Venevsky, S., Thonicke, K., Sitch, S., Cramer, W. 2002Simulating fire regimes in human-dominated ecosystems: Iberian Peninsula case studyGlobal Change Biol.8984998CrossRefGoogle Scholar
  26. Washington, W.M., Weatherly, J.W., Meehl, G.A., Semtner, A.J.,Jr., Bettge, T.W., Craig, A.P., Strand, W.G.,Jr., Arblaster, J., Wayland, V.B., James, R., Zhang, Y. 2000Parallel Climate Model (PCM): Control and Transient simulationsClimate Dynamics16755774CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact Research e.V. (PIK)PotsdamGermany
  2. 2.School of Geographical SciencesUniversity of BristolBristolUnited Kingdom

Personalised recommendations