Advertisement

Natural Hazards

, Volume 39, Issue 3, pp 395–418 | Cite as

Application of the Spatially Smoothed Seismicity and Monte Carlo Methods to Estimate the Seismic Hazard of Eritrea and the Surrounding Region

  • L. Hagos
  • R. Arvidsson
  • R. Roberts
Article

Abstract

The region of interest is characterized by incomplete data sets and little information about the tectonic features. Therefore, two methodologies for estimating seismic hazard were used in order to elucidate the robustness of the results: the method of spatially smoothed seismicity introduced by Frankel (1995) and later extended by Lapajne et al. (1997) and a Monte Carlo approach presented by Ebel and Kafka (1999). In the first method, fault-rupture oriented elliptical Gaussian smoothing was performed to estimate future activity rates along the causative structures. Peak ground accelerations were computed for a grid size of 15 km × 415 km assuming the centre of the grids as epicentres, from which the seismic hazard map was produced. The attenuation relationship by Ambraseys et al. (1996) was found suitable for the region under study. PGA values for 10% probability of exceedence in 50 years (return period of 475 years) were computed for each model and a combined seismic hazard map was produced by subjectively assigning weights to each of these models. A worst-case map is also obtained by picking the highest value at each grid point from values of the four hazard maps. The Monte Carlo method is used to estimate seismic hazard, for comparison to the results from our previous approach. Results obtained from both methods are comparable except values in the first set of maps estimate greater hazard in areas of low seismicity. Both maps indicate a higher hazard along the main tectonic features of the east African and Red Sea rift systems. Within Eritrea, the highest PGA exceeded a value 25% of g, located north of Red Sea port of Massawa. In areas around the capital, Asmara, PGA values exceed 10% of g.

Keywords

spatially smoothed seismicity Monte Carlo methods seismic hazard peak ground acceleration Eritrea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbate, E., Passerini, P., Leonardo, Z. 1995Strike-slip faults in a rift area: a transect in the Afar triangle, East AfricaTectonophysics2416797CrossRefGoogle Scholar
  2. Acton, G. D., Stein, S. 1991Block rotation and continental extensions in Afar: a comparison to oceanic microplate systemsTectonics10501526Google Scholar
  3. Ambraseys, N. N., Simpson, K. A., Boomer, J. K. 1996Prediction of horizontal response spectra in EuropeBull. Seismol. Soc. Am.5815831606Google Scholar
  4. Ayele, A., Kulhanek, O. 1997Spatial and temporal variations of seismicity in the Horn of Africa from 1960 to 1993Geophys. J. Int.130805810Google Scholar
  5. Ayele, A.: 1998, Seismicity and earthquake source mechanism study in the East African rift, PhD dissertation, Uppsala University.Google Scholar
  6. Båth, M.: 1973, Introduction to seismology, Birkhäuser Verlag, Basel, Stuttgart, 395 ppGoogle Scholar
  7. Båth, M. 1980Teleseismic magnitude relationsAnnali Geofis30299327Google Scholar
  8. Boore, D. M., Joyner, W. B., and Fumal, T. E.: 1994, Estimation of response spectra and peak accelerations from western North American earthquakes: An interim report, Part 2, US Geol., Surv. Open-File Report 94–127, 40 pGoogle Scholar
  9. Cochran, J. R. 1983Model for development of Red SeaAm. Assoc. Pet. Geol. Bull.674169Google Scholar
  10. Cornell, C. A. 1968Engineering seismic risk analysisBull. Seismol. Soc. Am.1815831606Google Scholar
  11. Drury, S. A., Souza Filho, C. R. 1998Neoprotorezoic terrain assemblages in Eritrea: review and prospectsJ. Afr. Earth Sci.27331348CrossRefGoogle Scholar
  12. Drury, S. A., Kelly, S. P., Berhe, S. M. 1994Structures related to the Red Sea evolution in northern EritreaTectonics1313711380CrossRefGoogle Scholar
  13. Ebel, J. E., Kafka, A. L. 1999A Monte Carlo approach to seismic hazard analysisBull. Seismol. Soc. Am.89854866Google Scholar
  14. Eritrean Ministry of Mines and Energy: 1997, Mineral Prospects of the State of Eritrea. Eritrean Ministry of Mines and Energy, Asmara, 16 ppGoogle Scholar
  15. Flinn, E. A., Engdahl, E. R., Hill, A. R. 1974Seismic and geographical regionalizationBull. Seismol. Soc. Am.64771993Google Scholar
  16. Fairhead, J. D., Girdler, R.W. 1971The seismicity of AfricaGeophys. J. R. Astr. Soc.24271301Google Scholar
  17. Fairhead, J. D. and Stuart, G. W.: 1982, The seismicity of the East African system and comaparison with other continental rifts, In: G. Palmason (ed.), Continental and Oceanic Rifts, Geodyn. Ser., Am. Geophys. Union, Vol. 8, pp. 41–61.Google Scholar
  18. Frankel, A. 1995Mapping seismic hazard in the central and eastern United StatesSeismol. Res. Lett.66821Google Scholar
  19. Ghebreab, W. 1996An outline of the major Pan-African lithologic assemblages and shear zones in Eritrea: Implications for mineral explorationAfr. Geosci. Rev.3355365Google Scholar
  20. Ghebreab, W. 1998Tectonics of the Red Sea region reassessedEarth Sci. Rev.45144CrossRefGoogle Scholar
  21. Gouin, P.: 1979, Earthquake History of Ethiopia and Horn of Africa, International Development Research Centre (IDRC), Ottawa, Ont., 258 pp.Google Scholar
  22. Hlatywayo, D. J.: 1992, Seismicity of Zimbabwe during the period 1959–1990. Report 3–92, Seismological department, Uppsala University.Google Scholar
  23. Hofsletter, R., Beyth, M. 2003The Afar depression: interpretation of the 1960–2000 earthquakesGeophys. J. Int.155715732CrossRefGoogle Scholar
  24. Joyner, W. B., Boore, D. M. 1998Measurement, characterization, and prediction of strong ground motionReprinted from Proc. Earthquake Eng. Soil Dyn.II160Google Scholar
  25. Kebede, F., Van Eck, T. 1997Probabilistic seismic hazard assessment for the horn of Africa based on seismotectonic regionalizationTectonophysics270221237CrossRefGoogle Scholar
  26. Kijko, A., Graham, G. 1998Parametric-historic procedure for probabilistic seismic hazard analysis, Part I: Estimation of maximum regional magnitude m max Pure Appl. Geophys.152413442CrossRefGoogle Scholar
  27. Lapajne, J. K.: 2000, Some features of the spatially smoothed seismicity approach, Seismicity Modelling in Seismic Hazard Mapping. Workshop proceedings, Solvenia, pp. 27–33.Google Scholar
  28. Lapajne, J. K.,  et al. 1997Spatially smoothed seismicity modelling of the seismic hazard in SloveniaJ. Seismol.17385CrossRefGoogle Scholar
  29. Leonov, J.: 2000, Horizontal Peak Ground Acceleration Attenuation Relationship: Way and Argumentation of its choice. First workshop on Earthquake Hazard Assessments for building codes, 27–30 March, Amman, JordanGoogle Scholar
  30. Long, L. T. 1974Earthquake sequences and b-values in the southeast United StatesBull. Seismol. Soc. Am.64267273Google Scholar
  31. Pedone, R., Lombardo, P., Diamantidis, D. 1992Seismotectonic regionalization of the Red Sea Area and its Application to Seismic Risk AnalysisNat. Hazards5233247CrossRefGoogle Scholar
  32. Poljak, M.: 2000, Seismotectonic input for spatially smoothed seismicity approach, Seismicity Modelling in Seismic Hazard Mapping. Workshop proceedings, Slovenia, p. 117.Google Scholar
  33. Reiter, L. 1990Earthquake Hazard AnalysisColumbia University PressNew York49254Google Scholar
  34. Ruegg, J., Lepine, J., Vincent, C. 1980Sismicité et microsismicité de la dorsale de Tadjoura, tectonique et frontière de plaquesBull. Soc. Geol. Fr.22917923Google Scholar
  35. Sket-Motnikar, B.: 2000, Detailed description of the improved spatially smoothed approach, Seismicity Modelling in Seismic Hazard Mapping. Workshop proceedings, Slovenia, p. 125.Google Scholar
  36. Sykes, L. R. 1967Mechanism of earthquakes and nature of faulting on the mid-ocean ridgesJ. Geophys. Res.7221312151CrossRefGoogle Scholar
  37. Turyomurugyendo, G. 1996, Some aspects of seismic hazard in the east and south African region, Unpublished. M.Sc. Thesis, Institute of Solid Earth Physics, University of Bergen, Bergen, Norway.Google Scholar
  38. Vakov, A. V. 1996Relationships between earthquake magnitude, source geometry and slip mechanismTectonophysics26197113CrossRefGoogle Scholar
  39. Wells, D. L., Coppersmith, K. J. 1994New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacementBull. Seismol. Soc. Am.849741002Google Scholar
  40. Wiemer, S. 2001A software package to analyze seismicity: ZMAPSeismol. Res. Lett.72373382Google Scholar
  41. Willmore, P. L. (ed.): 1979, Manual of Seismological Observatory Practice, World Data Center for Solid Earth Geophysics, Washington, 165 ppGoogle Scholar
  42. Zabukovec, B.: 2000, OHAZ – A computer program for spatially smoothed seismicity approach, Seismicity Modelling in Seismic Hazard Mapping. Workshop Proceedings, Slovenia, pp. 135.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Earth SciencesUppsala UniversityUppsalaSweden

Personalised recommendations