Brain Cell Biology

, Volume 35, Issue 2–3, pp 159–172 | Cite as

CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of glioma

  • Marzenna Wiranowska
  • Sharron Ladd
  • Sarice R. Smith
  • Paul E. Gottschall


Glioma invasion into the CNS involves the interaction of tumor cells with the host’s cells and extracellular matrix (ECM) molecules. In this study, the expression of ECM-associated and cell-associated proteins such as the transmembrane CD44 adhesion molecule and neuro-glial proteoglycan 2 (NG2), a member of the chondroitin sulfate proteoglycan family, were evaluated during glioma progression, in vitro and in vivo, using a model of a highly invasive and aggressive intracerebral mouse G-26 glioma. We found a marked increase in CD44 and NG2 expression in brain tissue containing glioma. The glioma levels of these proteins gradually increased over time to reach 3–15 times the levels in the contralateral control. NG2 and CD44 expression paralleled progression of the glioma, being higher on days 14 and 21 than on day 2 post-glioma implant. In addition, when invading glioma crossed the midline in the advanced tumor stage, levels of each of these proteins in the contralateral tissue were elevated, but were still significantly lower than in the ipsilateral, tumor-bearing hemisphere. Immunohistochemistry of advanced stage G-26 glioma (day 21) showed CD44 expression to be most prominent at the front of the glioma invasion line, sharply separated from normal brain parenchyma which expressed glial fibrillary acidic protein (GFAP). However, single CD44 positive cells that escaped the tumor mass penetrated between the astrocytes that encased the tumor at its periphery. In contrast, NG2 was expressed on nearly all glioma cells within the tumor mass but less so at the leading edge of the tumor. The NG2 positive cells were clearly demarcated and morphologically distinguishable from GFAP positive cells and only sporadic, small groups of NG2 positive cells were seen in the GFAP positive zone of the neuropil. Taken together, these data show that during glioma progression in the brain, the level and pattern of glioma-associated molecules such as CD44 and NG2 may aid in tracing and targeting the invading glioma cells.


Glioma Cell Glial Fibrillary Acidic Protein Glial Fibrillary Acidic Protein Expression Human Glioma Cell Line Glioma Invasion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by a grant from the American Cancer Society Florida Division.


  1. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 100, 3983–3988PubMedCrossRefGoogle Scholar
  2. Ariza, A., Lopez, D., Mate, J. L., Isamat, M., Musulen, E., Pujol, M., Levy, A., and Navas-Palacios, J. J. (1995). Role of CD44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma: An immunohistochemistry study. Human Pathol. 26, 1144–1147CrossRefGoogle Scholar
  3. Bellail, A. C., Hunter, S. B., Brat, D. J., Tan, C., and Van Meir, E. G. (2004). Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int. J. Biochem. Cell Biol. 36, 1046–1069PubMedCrossRefGoogle Scholar
  4. Burg, M. A., Grako, K. A., and Stallcup W. B. (1998). Expression of the NG2 proteoglycan enhances the growth and metastatic properties of melanoma cells. J. Cell. Physiol. 177, 299–312PubMedCrossRefGoogle Scholar
  5. Burg, M. A., Nishiyama, A., and Stallcup, W. B. (1997). A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen. Exp. Cell Res. 235, 254–264PubMedCrossRefGoogle Scholar
  6. Butt, A. M., Kiff, J., Hubbard, P., and Berry, M. (2002). Synantocytes: New functions for novel NG2 expressing glia. J. Neurocytol. 31, 551–565PubMedCrossRefGoogle Scholar
  7. Chekenya, M., and Pilkington, G. J. (2002). NG2 precursor cells in neoplasia: Functional, histogenesis and therapeutic implications for malignant brain tumors. J. Neurocytol. 31, 507–521PubMedCrossRefGoogle Scholar
  8. Chekenya, M., Rooprai, H. K., Davies, D., Levine, J. M., Butt, A. M., and Pilkington, G. J. (1999). The NG2 chondroitin sulfate proteoglycan: Role in malignant progression of human brain tumors. Int. J. Dev. Neurosci. 17, 421–435PubMedCrossRefGoogle Scholar
  9. Chintala, S. K., Sawaya, R., Gokaslan, Z. L., Fuller, G., and Rao, J. S. (1996). Immunohistochemical localization of extracellular matrix proteins in human glioma, both in vivo and in vitro. Cancer Lett. 101, 107–114PubMedCrossRefGoogle Scholar
  10. Chittajallu, R., Aguirre, A., and Gallo, V. (2004). NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J. Physiol. 561, 109–122PubMedCrossRefGoogle Scholar
  11. Doane, K. J., Howell, S. J., and Birk, D. E. (1998). Identification and functional characterization of two type VI collagen receptors, alpha 3 beta 1 integrin and NG2, during avian corneal stromal development. Invest. Ophthalmol. Visual Sci. 39, 263–275Google Scholar
  12. Faassen, A. E., Schrager, J. A., Klein, D. J., Oegema, T. R., Couchman, J. R., and McCarthy, J. B. (1992). A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J. Cell Biol. 116, 521–531PubMedCrossRefGoogle Scholar
  13. Fang, X., Burg, M. A., Barritt, D., Dahlin-Huppe, K., Nishiyama, A., and Stallcup, W. B. (1999). Cytoskeletal reorganization induced by engagement of the NG2 proteoglycan leads to cell spreading and migration. Mol. Biol. Cell 10, 3373–3387PubMedGoogle Scholar
  14. Fidler, P. S., Schuette, K., Asher, R. A., Dobbertin, A., Thornton, S. R., Calle-Patino, Y., Muir, E., Levine, J. M., Geller, H. M., Rogers, J. H., Faissner, A., and Fawcett, J. W. (1999). Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: The major axon-inhibitory proteoglycan is NG2. J. Neurosci. 19, 8778–8788PubMedGoogle Scholar
  15. Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021PubMedCrossRefGoogle Scholar
  16. Gladson, C. L. (1999). The extracellular matrix of gliomas: Modulation of cell function. J. Neuropathol. Exp. Neurol. 10, 1029–1040Google Scholar
  17. Hibino S., Shibuya, M., Engbring, J. A., Mochizuki, M., Nomizu, M., and Kleinman, H. K. (2004). Identification of an active site on the laminin alpha5 chain globular domain that binds to CD44 and inhibits malignancy. Cancer Res. 64, 4810–4816PubMedCrossRefGoogle Scholar
  18. Hibino S, Shibuya, M., Hoffman, M. P., Engbring, J.A., Hossain, R., Mochizuki, M., Kudoh, S., Nomizu, M., and Kleinman, H. K. (2005). Laminin alpha5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44. Cancer Res. 65, 10494–10501PubMedCrossRefGoogle Scholar
  19. Johansson, F. K., Goransson, H., and Westermark, B. (2005). Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene 24, 3896–3905PubMedCrossRefGoogle Scholar
  20. Jones, L. L., Yamaguchi, Y., Stallcup, W. B., and Tuszynski, M. (2002). NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J. Neurosci. 22, 2792–2803PubMedGoogle Scholar
  21. Kawashima, H., Hirose, M., Hirose, J., Nagakubo, D., Plaas, A. H. K., and Miyasaka, M. (2000). Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J. Biol. Chem. 275, 35448–35456PubMedCrossRefGoogle Scholar
  22. Khoshyomn, S., Penar, P. L., Wadsworth, M. P., and Taatjes, D. J. (1997). Localization of CD44 at the invasive margin of glioblastomas by immunoelectron microscopy. Ultrastract. Pathol. 21, 517–525Google Scholar
  23. Kim, M.-S., Park, M.-J., Moon, E.-J., Kim, S.-J., Lee, C.-H., Yoo, H., Shin, S.-H., Song, E.-S., and Lee, S.-H. (2005). Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-Kinase/Akt pathway to enhance motility of human glioma cells. Cancer Res. 65, 686–691PubMedGoogle Scholar
  24. Knott, J. C., Mahesparan, R., Garcia-Cabrera, I., Bolge Tysnes, B., Edvardsen, K., Ness, G. O., Mork, S., Lund-Johansen, M., and Bjerkvig, R. (1998). Stimulation of extracellular matrix components in the normal brain by invading glioma cells. Int. J. Cancer 75, 864–872PubMedCrossRefGoogle Scholar
  25. Knutson, J. R., Iida, J., Fields, G. B., and McCarthy, J. B. (1996). CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol. Biol. Cell 7, 383–396PubMedGoogle Scholar
  26. Levine, J. M. (1994). Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J. Neurosci. 14, 4716–4730PubMedGoogle Scholar
  27. Levine, J. M., and Card, J. P. (1987). Light and electron microscopic localization of a cell surface antigen (NG2) in the rat cerebellum: Association with smooth protoplasmic astrocytes. J. Neurosci. 7, 2711–2720PubMedGoogle Scholar
  28. Levine, J. M., and Nishiyama, A. (1996). The NG2 chondroitin sulfate proteoglycan: A multifunctional proteoglycan associated with immature cells. Prespects Dev. Biol. 3, 245–259Google Scholar
  29. Li, H., Liu, J., and Hofmann, M. (1995). Differential CD44 expression patterns in primary brain tumors and brain metastases. Br. J. Cancer 72, 160–163PubMedGoogle Scholar
  30. Lin, H.-X., Dahlin-Huppe, K., and Stallcup, W. B. (1996a). Interaction of the NG2 proteoglycan with the actin cytoskeleton. J. Cell Biochem. 63, 463–477PubMedCrossRefGoogle Scholar
  31. Lin, X.-H., Grako, K. A., Burg, M. A., and Stallcup, W. B. (1996b). NG2 proteoglycan and the actin binding protein fascin define separate populations of actin-containing filopodia and lamellipodia during cell spreading and migration. Mol. Biol. Cell 7, 1977–1993PubMedGoogle Scholar
  32. Mahesparan, R., Read, T.-A., Lund-Johansen, M., Skaftnesmo, K. O., Bjerkvig, R., and Engebraaten, O. (2003). Expression of extracellular matrix components in a highly infiltrative in vivo glioma model. Acta Neuropathol. 105, 49–57PubMedGoogle Scholar
  33. McKeever, P. E., Fligliel, S. E., Varani, J., Hudson, J. L., Smith, D., Castle, R. L., and McCoy, J. P. (1986). Products of cells cultured from gliomas. IV. Extracellular matrix proteins of gliomas. Int. J. Cancer 37, 867–874PubMedCrossRefGoogle Scholar
  34. Murai, T., Miyazaki, Y., Nishinakamura, H., Sugahara, K. N., Miyauchi, T., Sako, Y., Yanagida, T., and Miyasaka, M. (2004). Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J. Biol. Chem. 279, 4541–4550PubMedCrossRefGoogle Scholar
  35. Nishiyama, A., Lin, X.-H., Giese, N., Heldin, C. H., and Stallcup, W. B. (1996). Co-localization of NG2 proteoglycan and PDGF alpha receptor on O2A progenitor cells in the developing rat brain. J. Neurosci. 43, 299–314CrossRefGoogle Scholar
  36. Nishiyama, A., and Stallcup, W. B. (1993). Expression of NG2 proteoglycan causes retention of type VI collagen on the cell surface. Mol. Biol. Cell 4, 1097–1108PubMedGoogle Scholar
  37. Pedersen, P. H., Marienhagen, K., Mork S., and Bjerkvig, R. (1993). Migratory pattern of fetal rat brain cells and human glioma cells in the adult rat brain. Cancer Res. 53, 5158–5165PubMedGoogle Scholar
  38. Radotra, B., McCormick D., and Crockard, A. (1994). CD44 plays a role in adhesive interactions between glioma cells and extracellular matrix components. Neuropathol. Appl. Neurobiol. 20, 399–405PubMedCrossRefGoogle Scholar
  39. Ranuncolo, S. M., Ladeda, V., Specterman, S., Varela, M., Lastiri, J., Morandi, A., Matos, E., Bal de Kier Joffe, E., Puricelli, L., and Pallotta, M. G. (2002). CD44 expression in human gliomas. J. Surg. Oncol. 79, 30–36PubMedCrossRefGoogle Scholar
  40. Rezajooi, K., Pavlides, M., Winterbottom, J., Stallcup, W. B., Hamlyn, P. J., Lieberman, A. R., and Anderson, P. N. (2004). NG2 proteoglycan expression in the peripheral nervous system: Upregulation following injury and comparison with CNS lesions. Mol. Cell. Neurosci. 25, 572–584PubMedCrossRefGoogle Scholar
  41. de Ridder, L. I., Laerum, O. D., Mork, S. J., and Bigner, D. D. (1987). Invasiveness of human glioma cell lines in vitro: Relation to tumorigenicity in athymic mice. Acta Neuropathol. 72, 207–213PubMedCrossRefGoogle Scholar
  42. Rutka, J. T., Ackerley, C., Hubbard, S. L., Tilup, A., Dirks, P. B., Jung, S., Ivanchuk, S., Kurimoto, M., Tsugu, A, and Becker, L. E. (1998). Characterization of glial filament-cytoskeletal interactions in human astrocytomas: An immuno-ultrastructural analysis. Eur. J. Cell Biol. 76, 279–287PubMedGoogle Scholar
  43. Schrappe, M., Klier, G. F., Spiro, R. C., Waltz, T. A., Reisfeld, R. A., Gladson, C. L. (1991). Correlation of chondroitin sulfate proteoglycan expression on proliferating brain capillary endothelial cells with the malignant phenotype of astroglial cells. Cancer Res. 51, 4986–4993PubMedGoogle Scholar
  44. Shoshan, Y., Nishiyama, A., Chang, A., Mork, S., Barnett, G. H., Cowell, J. K., Trapp, B. D., and Staugaitis, S. M. (1999). Expression of oligodendrocyte progenitor cell antigens by gliomas: Implications for the histogenesis of brain tumors. Proc. Natl. Acad. Sci. USA 96, 10361–10366Google Scholar
  45. Stallcup, W. B., Beasley, L., and Levine, J. M. (1983). Cell-surface molecules that characterize different stages in the development of cerebral interneurons. Cold Spring Harbor Symp. Quant. Biol. 48, 761–774PubMedGoogle Scholar
  46. Stallcup, W. B., Dahlin, K., and Healy, P. (1990). Interaction of the NG2 chondroitin sulfate proteoglycan with type VI collagen. J. Cell Biol. 111, 3177–3188PubMedCrossRefGoogle Scholar
  47. Stylli, S. S., Kaye, A. H., and Novak, U. (2000). Induction of CD44 expression in stab wounds of brain: Long term persistence of CD44 expression. J. Clin. Neurosci. 7, 137–140PubMedCrossRefGoogle Scholar
  48. Tillet, E., Gential, B., Garrone, R., and Stallcup, W. B. (2002). NG2 proteoglycan mediates beta 1 integrin-independent cell adhesion and spreading on collagen VI. J. Cell Biochem. 86, 726–736PubMedCrossRefGoogle Scholar
  49. Tysnes, B. B., Mahesparan, R., Thorsen, F., Haugland, H. K., Porwol, T., Enger, P. O., Lund-Johansen, M., and Bjerkvig, R. (1999). Laminin expression by glial fibrillary acidic protein positive cells in human gliomas. Int. J. Dev. Neurosci. 17, 531–539PubMedCrossRefGoogle Scholar
  50. Wiranowska, M., Gonzalvo, A. A., Saporta, S., Gonzalez O. R., and Prockop, L. D. (1992). Evaluation of blood-brain barrier permeability and the effect of interferon in mouse glioma model. J. Neuro-Oncol. 14, 225–236CrossRefGoogle Scholar
  51. Wiranowska, M., and Naidu, A. K. (1994). Interferon effect on glycosaminoglycans in mouse glioma in vitro. J. Neuro-Oncol. 18, 9–17CrossRefGoogle Scholar
  52. Wiranowska, M, Prockop, L. D., Naidu, A. K., Saporta, S., Kori, S., and Kulkarni, A. (1994). Interferon entry through the blood-brain barrier in glioma and its effect on lipoxygenase activity. Anticancer Res. 14, 1121–1126PubMedGoogle Scholar
  53. Wiranowska, M., Rojiani, A., Gottschall, P., Moscinski, L., Johnson, J., and Saporta, S. (2000). CD44 expression and MMP-2 secretion by glioma cells: Effect of interferon and anti-CD44 antibody. Anticancer Res. 20, 4301–4306PubMedGoogle Scholar
  54. Wiranowska, M., Tresser, N., and Saporta, S. (1998). The effect of interferon and anti-CD44 antibody on mouse glioma invasiveness in vitro. Anticancer Res. 18, 3331–3338PubMedGoogle Scholar
  55. Yamaguchi, Y. (2000). Lecticans: Organizers of the brain extracellular matrix. Cell. Mol. Life Sci. 57, 276–289PubMedCrossRefGoogle Scholar
  56. Yuan, W., Matthews, R. T., Sandy, J., and Gottschall, P. E. (2002). Association between protease-specific proteolytic cleavage of brevican and synaptic loss in the dentate gyrus of kainic acid treated rats. Neurosicience 114, 1091–1101Google Scholar
  57. Zheng, Z., Katoh, S., He, Q., Oritani, K., Miyake, K., Lesley, J., Hyman, R., Hamik, A., Parkhouse, R. M., Farr, A. G., and Kincade, P. W. (1995). Monoclonal antibodies to CD44 and their influence on hyaluronan recognition. J. Cell Biol. 130, 485–495.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Marzenna Wiranowska
    • 1
    • 3
  • Sharron Ladd
    • 1
  • Sarice R. Smith
    • 1
    • 2
  • Paul E. Gottschall
    • 2
  1. 1.Department of Pathology & Cell BiologyUniversity of South Florida, College of MedicineTampaUSA
  2. 2.Molecular Pharmacology and PhysiologyUniversity of South Florida, College of MedicineTampaUSA
  3. 3.Interdisciplinary Oncology Neuro-Oncology ProgramUniversity of South Florida, College of Medicine, H. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations