Advertisement

Journal of Neurocytology

, Volume 34, Issue 6, pp 471–487 | Cite as

GABA-immunoreactive neurons and terminals in the cat periaqueductal gray matter: A light and electron microscopic study

  • Paolo Barbaresi
Article

Abstract

Immunocytochemical and electron microscopic methods were used to study the GABAergic innervation in adult cat periaqueductal gray matter (PAG). A mouse monoclonal antibody against γ -aminobutyric acid (GABA) was used to visualize the inhibitory neuronal system of PAG. At light microscopy, GABA-immunopositive (GABAIP) neurons formed two longitudinally oriented columns in the dorsolateral and ventrolateral PAG that accounted for 36% of the neuronal population of both PAG columns; their perikaryal cross-sectional area was smaller than that of unlabeled (UNL) neurons found in the same PAG subdivisions. At electron microscopic level, patches of GABA immunoreactivity were readily detected in neuronal cell bodies, proximal and distal dendrites, axons and axon terminals. Approximately 35–36% of all terminals were GABAIP; they established symmetric synapses with dendrites (84.72% of the sample in the dorsolateral PAG and 86.09% of the sample in the ventrolateral PAG) or with cell bodies (7–10% of the sample). Moreover, 49.15% of GABAIP axon terminals in the dorsolateral and 52.16% in the ventrolateral PAG established symmetric synapses with GABAIP dendrites. Immunopositive axon terminals and unlabeled terminals were also involved in the formation of a complex synaptic arrangment, i.e. clusters of synaptic terminals in close contact between them that were often observed in the PAG neuropil. Moreover, a fair number of axo-axonic synapses between GABAIP and/or UNL axon terminals were present in both PAG subdivisions. Several dendro-dendritic synapses between labeled and unlabeled dendrites were also observed in both PAG subdivisions. These results suggest that in the cat PAG there exist at least two classes of GABArgic neurons. The first class could exert a tonic control on PAG projecting neurons, the second could act on those GABAergic neurons that in turn keep PAG projecting neurons under tonic inhibition. The functional implications of this type of GABAergic synapse organization are discussed in relation to the dishinibitory processes that take place in the PAG.

Keywords

GABA Column Synapse Dendrite Axon terminal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BAGLEY, E. E., GERKE, M. B., VAUGHAN, C. W., HACK, S. P. & CHRISTIE, J. M. D. (2005) GABA transporter currents acivated by protein kinase A excite midbrain neurons during opioid withdrawal. Neuron 45, 433–445.PubMedCrossRefGoogle Scholar
  2. BANDLER, R. & DEPAULIS, A. (1991a) Midbrain periaqueductal gray control of defensive behavior in cat and rat. In The Midbrain Periaqueductal Gray Matter (edited by DEPAULIS, A. & BANDLER, R.) pp. 175–198. New York: Plenum Press.Google Scholar
  3. BANDLER, R., CARRIVE, P. & DEPAULIS, A. (1991b) Emerging principles of organization of the midbrain periaqueductal gray matter. In The Midbrain Periaqueductal Gray Matter (edited by DEPAULIS, A. & BANDLER, R.) pp. 1–8. New York: Plenum Press.Google Scholar
  4. BARBARESI, P. & MANFRINI, E. (1988) Glutamate decarboxylase-immunoractive neurons and terminals in the periaqueductal gray of the rat. Neuroscience 27, 183–191.PubMedCrossRefGoogle Scholar
  5. BARBARESI, P., MINELLI, A., GAZZANELLI, G. & MALATESTA, M. (1994) Commissural connections of the cat periaqueductal gray matter studied with anterograde and retrograde tract-tracing techniques. Neuroscience 60, 781–799.PubMedCrossRefGoogle Scholar
  6. BARBARESI, P., GAZZANELLI, G. & MALATESTA, M. (1998) GABA transporter-1 (GAT-1) immunoreactivity in the cat periaqueductal gray matter. Neuroscience Letters 250, 123–126.PubMedCrossRefGoogle Scholar
  7. BARBARESI, P., GAZZANELLI, G. & MALATESTA, M. (2001) γ-aminobutyric acid transporters in the cat periaqueductal gray: A light and electron microscopic immunocytochemical study. Journal of Comparative Neurology 429, 337–354.PubMedCrossRefGoogle Scholar
  8. BEHBEHANI, M. M., JANIG, M. R. & CHANDLER, S. D. (1990a) The effect of [Met]enkephalin on the periaqueductal gray neurons of the rat: An in vitro study. Neuroscience 38, 373–380.CrossRefGoogle Scholar
  9. BEHBEHANI, M. M., JANIG, M. R., CHANDLER, S. D. & ENNIS, M. (1990b) The effects of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat. Pain 40, 195–204.CrossRefGoogle Scholar
  10. BEITZ, A. J. (1995) Periaqueductal gray. In The Rat Nervous System, 2nd edition (edited by G. Paxinos) pp. 173–182, London: Academic Press.Google Scholar
  11. BELIN, M. F., AGUERA, M., TAPPAZ, M., MCRAE-DEGUERCE, A., BOBILIER, P. & PUJOL J. F. (1979) GABA-accumulating neurons in the nucleus raphe dorsalis and periaqueductal gray in the rat: A biochemical and radioautographic study. Brain Research 170, 279–297.PubMedCrossRefGoogle Scholar
  12. BENNETT, M. V. L. (2000) Electrical synapses, a personal perspective (or history). Brain Research Reviews 32, 16–28.PubMedCrossRefGoogle Scholar
  13. BERMAN, A.L. (1968) The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison, Milwaukee, and London: The University of Wisconsin.Google Scholar
  14. BIANCHI, R. & GIOIA, M. (1984) Ultrastructural features of synpases of the periaqueductal gray matter (PAG) of the cat. Journal für Hirnforschung 25, 275–283.PubMedGoogle Scholar
  15. BLOMQVIST, A. & BROMAN, J. (1988) Light and electron microscopic immunohistochemical demonstration of GABA-immunoreactive astrocytes in the brain stem of the rat. Journal of Neurocytology 17, 629–637.PubMedCrossRefGoogle Scholar
  16. BORDEN, L. A., SMITH, K. E., HARTIG, P. R., BRANCHEK, T. A. & WEINSHANK,. R. L. (1992) Molecular heterogeneity of the γ-aminobutyric acid (GABA) transport system. Cloning of two novel high affinity GABA transporters from rat brain. Journal Biological Chemistry 267, 21098–21104.Google Scholar
  17. BORDEN, L. A., MURALI DAHR, T. G., SMITH, K. E., WEINSHANK, R. L., BRANCHEK, T. A. & GLUCHOWSKI, C. (1994) Tiagabine, SK&F 89976-A, CI-966, and NCC-711 are selective for the cloned GABA transporter GAT-1. European Journal of Pharmacology 269, 219–224.PubMedCrossRefGoogle Scholar
  18. BUMA, P., VEENING, J., HAFMANS, T., JOOSTEN, H. & NIEUWENHUYS, R. (1992) Ultrastructure of the periaqueductal grey matter of the rat: An electron microscopical and horseradish peroxidase study. Journal of Comparative Neurology 319, 519–535.PubMedCrossRefGoogle Scholar
  19. CHAKRAVARTY, D. N. & FAINGOLD, C. L. (1996) Increased responsiveness and failure of habituation in neurons of the external nucleus of inferior colliculus associated with audiogenic seizures of the genetically epilepsy-prone rat. Experimental Neurology 141, 280–286.PubMedCrossRefGoogle Scholar
  20. CHAKRAVARTY, D. N. & FAINGOLD, C. L. (1997) Aberrant neuronal responsiveness in the genetically epilepsy-prone rat: Acoustic responses and influences of the central nucleus upon the external nucleus of the inferior colliculus. Brain Research 761, 263–270.PubMedCrossRefGoogle Scholar
  21. CHIOU, L. C. & HUANG, L.-Y. M. (1999) Mechanism underlyng increased neuronal activity in the rat ventrolateral periaqueductal grey by a μ-opioid. Journal of Physiology 518(Part 2), 551–559.PubMedCrossRefGoogle Scholar
  22. CLARK, J. A., DEUTCH, A. Y., GALLIPOLI, P. Z. & AMARA, S. G. (1992) Functional expression and CNS distribution of a β-alanine sensitive neuronal GABA transporter. Neuron 9, 337–348.PubMedCrossRefGoogle Scholar
  23. DEPAULIS, A., MORGAN, M. M. & LIEBESKIND, J. C. (1987) GABAergic modulation of the analgesic effects of morphine microinjected in the ventrolateral periaqueductal gray matter of the rat. Brain Research 436, 223–228.PubMedCrossRefGoogle Scholar
  24. DISCALA, G., SCHMITT, P. & KARLI, P. (1984) Flight induced by infusion of bicuculline methiodide into periventricular structurea. Brain Research 309, 199–208.CrossRefGoogle Scholar
  25. DUDEK, F. E., YASUMURA, T. & RASH, J. E. (1998) Non-synaptic mechanisms in seizures and epileptogenesis. Cell Biology International 22, 793–805.PubMedCrossRefGoogle Scholar
  26. FAINGOLD, C. L., RANDALL, M. E. & BOERSMA ANDERSON, C. A. (1994) Blockade of GABA uptake with tiagabine inhibits audiogenic seizures and reduces neuronal firing in the inferior colliculus of the genetically epilepsy-prone rat. Experimental Neurology 126, 225–232.PubMedCrossRefGoogle Scholar
  27. GIOIA, M., TREDICI, G. & BIANCHI, R. (1983) The ultrastructure of the periaqueductal gray matter of the cat. Journal of Submicroscopic Cytology 15, 1013–1026.PubMedGoogle Scholar
  28. GIOIA, M., TREDICI, G. & BIANCHI, R. (1985) A Golgi study of the periaqueductal gray matter in the cat. Neuronal types and their distribution. Experimental Brain Research 58, 318–332.CrossRefGoogle Scholar
  29. GIOIA, M., TREDICI, G. & BIANCHI, R. (1998) Dendritic arborization and spines of the neurons of the cat and human periaqueductal gray: A light, confocal laser scanning, and electron microscope study. Anatomical Record 251, 316–325.PubMedCrossRefGoogle Scholar
  30. GUASTELLA, J., NELSON, N., NELSON, H., CZYZYK, L., KEYNAN, S., MIEDEL, M. C., DAVIDSON, N., LESTER, H. A. & KANNER, B. I. (1990) Cloning and expression of a rat brain GABA transporter. Science 249, 1303–1306.PubMedGoogle Scholar
  31. HALL, C. W. & BEHBEHANI, M. M. (1998) Synaptic effects of nitric oxide on enkephalinergic, GABAergic, and glutamatergic networks of the rat periaqueductal gray. Brain Research 805, 69–87.PubMedCrossRefGoogle Scholar
  32. HO, I. K., LOH, H. H. & WAY, E. L. (1976) Pharmacological manipulation of gamma-aminobutyric acid (GABA) in morphine analgesia, tolerance and physical dependence. Life Sciences 18, 1111–1123.PubMedCrossRefGoogle Scholar
  33. HSU, S. M., RAINE, L. & FANGER, H. (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. Journal of Histochemistry and Cytochemistry 29, 577–580.PubMedGoogle Scholar
  34. IMPERATO, A., DICHIARA, G. (1981) Behavioural effects of GABA-agonists and antagonists infused in the mesencephalic reticular formation-deep layers of superior colliculus. Brain Research 224, 185–194.PubMedCrossRefGoogle Scholar
  35. JüRGENS, U. (1991) Neurochemical study of PAG control of vocal behavior. In The Midbrain Periaqueductal Gray Matter (edited by DEPAULIS, A. & BANDLER, R.) pp. 11–21. New York: Plenum Press.Google Scholar
  36. KEAY, K. A. & BANDLER, R. (2004) Periaqueductal gray. In The rat nervous system, third edition (edited by G. Paxinos) pp. 243–257, London: Academic Press.Google Scholar
  37. KIROUAC, G. J., LI, S. & MABROUK, G. (2004) Gabaergic projection from the ventral tegmental area and substantia nigra to periaqueductal gray region and the dorsal raphe nucleus. Journal of Comparative Neurology 469, 170–184.PubMedCrossRefGoogle Scholar
  38. KISHIMOTO, K., KOYAMA, S. & AKAIKE, N. (2001) Synergistic μ-opioid and 5-HT 1A presynaptic inhibition of GABA release in rat periaqueductal gray neurons. Neuropharmacology 41, 529–538.PubMedCrossRefGoogle Scholar
  39. KOSAKA, T., NAGATSU, I., WU, J.-Y. & HAMA, K. (1986) use of high concentrations of glutaraldehyde for immunocytochemistry of transmitter-synthetizing enzimes in the central nervous system. Neuroscience 18, 975–990.PubMedCrossRefGoogle Scholar
  40. LEE, J.-J., HAHM, E.-T., MIN, B.-I., HAN, S.-H., CHO, J.-J. & CHO, Y.-W. (2003) Roles of protein kinase A and C in the opioid potentiation of the GABA A response in rat periaqueductal gray neuron. Neuropharmacology 44, 573–583.PubMedCrossRefGoogle Scholar
  41. LIU, R. P. C. & HAMILTON, B. L. (1980) Neurons of periaqueductal gray matter as revealed by Golgi study. Journal of Comparative Neurology 189, 403–418.PubMedCrossRefGoogle Scholar
  42. LIU, Q.-R., LOPEZ-CÒRCUERA, B., MANDIYAN, S., NELSON, H. & NELSON, N. (1993) Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. Journal of Biological Chemistry 268, 2106–2112.PubMedGoogle Scholar
  43. LOVICK, T. A. (2001) Involvement of GABA in medullary raphe-evoked modulation of neuronal activity in the periqueductal grey matter in the rat. Experimental Brain Research 137, 214–218.CrossRefGoogle Scholar
  44. MATUTE, C. & STREIT, P. (1986) Monoclonal antibodies demonstrating GABA-like immunoreactivity. Histochemistry 86, 147–157.PubMedCrossRefGoogle Scholar
  45. MEEK, J., KIRCHBERG, G., GRANT, K. & VON DER EMDE, G. (2004) Dye coupling without gap junctions suggests excitatory connections of γ-aminobutyric acidergic neurons. Journal of Comparative Neurology 468, 151–164.PubMedCrossRefGoogle Scholar
  46. MEINECKE, D. L. & PETERS, A. (1987) GABA immunoreactive neurons in rat visual cortex. Journal of Comparative Neurology 261, 388–404.PubMedCrossRefGoogle Scholar
  47. MELLER, S. T. & DENNIS, B. J. (1993) Quantitative ultrastructural analysis of the periaqueductal gray in the rabbit. Anatomical Record 236, 573–585.PubMedCrossRefGoogle Scholar
  48. MOREAU, J.-L. & FIELDS H. L. (1986) Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Research 397, 37–46.PubMedCrossRefGoogle Scholar
  49. MOSS, M. S. & BASBAUM, A. I. (1983) The fine structure of the caudal periaqueductal gray of the cat: Morphology and synaptic organization of normal and immunoreactive enkephalin-labeled profiles. Brain Research 289, 27–43.PubMedCrossRefGoogle Scholar
  50. NELSON, N. (1998) The family of Na+/Cl- neurotransmitter transporters. Journal of Neurochemistry 71, 1785–1803.PubMedCrossRefGoogle Scholar
  51. N'GOUEMO, P. & FAINGOLD, C. L. (1998) Periaqueductal gray neurons exhibit increased responsiveness associated with audiogenic seizures in the genetically epilepsy-prone rat. Neuroscience 84, 619–625.PubMedCrossRefGoogle Scholar
  52. N'GOUEMO, P. & FAINGOLD, C. L. (1999) The periaqueductal grey is a critical site in the neuronal network for audiogenic seizures: Modulation by GABAA, NMDA and opioid receptors. Epilepsy Research 35, 39–46.PubMedCrossRefGoogle Scholar
  53. OGAWA, S., KOW, L.-M., MCCARTHY, M. M., PFAFF, D. W. & SCHWARTZ-GIBLIN, S. (1991) Midbrain PAG control of female reproductive behavior: in vitro electrophysiological characterization of actions of lordosis-relevant substances. In The Midbrain Periaqueductal Gray Matter (edited by D EPAULIS, A. & B ANDLER, R.) pp. 211-235. New York: Plenum Press.Google Scholar
  54. ONSTOTT, D., MAYER, B. & BEITZ, A. J. (1993) Nitric oxide synthase immunoreactive neurons anatomically define a longitudinal dorsolateral column within the midbrain periaqueductal gray of the rat: Analysis using a laser confocal microscopy. Brain Research 610, 317–324.PubMedCrossRefGoogle Scholar
  55. PANNESE, E. (1994) Neurocytology fine structure of neurons, nerve processes and neuroglial cells. New York: Thieme Medical Publisher, Inc.Google Scholar
  56. PETERS, A., PALAY, S.L., WEBSTER, H. D. F. (1991) The fine structure of the nervous system. Neurons and their supporting cells, 3rd ed. New York: Oxford University Press.Google Scholar
  57. RASBAND, W. S. & BRIGHT, D. S. (1995) NIH image: A public domain image processing program for the Macintosh. Microbeam Analysis Society Journal 4, 137–149.Google Scholar
  58. REICHLING, D. B., LAKOS, S. F. & BASBAUM A. I. (1984) Intracellular electrophysiological and Golgi analysis of the midbrain periaqueductal gray (PAG) of the rat. Society for Neuroscience Abstracts 10 (Part 1), 101.Google Scholar
  59. REICHLING, D. B. (1991) GABAergic neuronal circuitry in the periaqueductal gray matter. In The Midbrain Periaqueductal Gray Matter (edited by D EPAULIS, A. & B ANDLER, R.) pp. 329-344. New York: Plenum Press.Google Scholar
  60. SANDKüHLER, J. (1991) Induction of the Proto-Oncogene c-fos as a cellular marker of brainstem neurons activated from the PAG. In The Midbrain Periaqueductal Gray Matter (edited by D EPAULIS, A. & B ANDLER, R.) pp. 267–286. New York: Plenum Press.Google Scholar
  61. SANDNER, G., DESSORT, D., SCHMITT, P. & KARLI, P. (1981) Distribution of GABA in the periaqueductal gray matter. Effects of medial hypothalamic lesions. Brain Research 224, 279–290.PubMedCrossRefGoogle Scholar
  62. SHERMAN, A. D. & GEBHART, G. F. (1974) Regional levels of GABA and glutamate in mouse brain following exposure to pain. Neuropharmacology 13, 673–675.PubMedCrossRefGoogle Scholar
  63. SHERMAN, A. D. & GEBHART, G. F. (1976) Morphine and pain: Effects on aspartate, GABA and glutamate in four discrete areas of mouse brain. Brain Research 110, 273–281.PubMedCrossRefGoogle Scholar
  64. SPACEK, J. & HARRIS, K. M. (1998) Three-dimensional organization of cell adhesion junctions at synapses and dendritic spines in area CA1 of the rat hippocampus. Journal of Comparative Neurology 393, 58–68.PubMedCrossRefGoogle Scholar
  65. STENBERGER, L. A. (1986) Immunocytochemistry, 3rd ed. NewYork: Wiley.Google Scholar
  66. TREDICI, G., BIANCHI, R. & GIOIA, M. (1983) Short intrinsic circuit in the periaqueductal gray matter of the cat. Neuroscience Letters, 39, 131–136.PubMedCrossRefGoogle Scholar
  67. VAUGHAN, C. W. & CHRISTIE, M. J. (1997) Presynaptic inhibitory action of opioids on synaptic transmission in the rat periaqueductal grey in vitro. Journal of Physiology 498(Part 2), 463–472.PubMedGoogle Scholar
  68. WILLIAMS, F. G. & BEITZ, A. J. (1990a) Ultrastructural morphometric analysis of GABA-immunoreactive terminals in the ventrocaudal periaqueductal grey: Analysis of the relationship of GABA terminals and GABAA receptor to periaqueductal grey-raphe magnus projection neurons. Journal of Neurocytology 19, 686–696.CrossRefGoogle Scholar
  69. WILLIAMS, F. G. & BEITZ, A. J. (1990b) Ultrastructural morphometric analysis of enkephalin-immunoreactive terminals in the ventrocaudal periaqueductal gray: Analysis of their relationship to periaqueductal gray-raphe magnus projection neurons. Neuroscience 38, 381–394.CrossRefGoogle Scholar
  70. YANG, K., FURUE, H., KUMAMOTO, E., DONG, Y.-X., & YOSHIMURA, M. (2003) Pre- and postsynaptic inhibition mediated by GABAB receptors in rat ventrolateral periaqueductal gray neurons. Biochemical and Biophysical Research Comunications 302, 233–237.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Neurosciences, Section of Human PhysiologyMarche Polytechnic UniversityAnconaItaly

Personalised recommendations