Journal of Neurocytology

, Volume 34, Issue 3–5, pp 269–293 | Cite as

Induced and constitutive heat shock protein expression in the olfactory system—A review, new findings, and some perspectives



Heat shock, or stress, proteins (HSPs) are cellular proteins induced in response to conditions that cause protein denaturation, and their induction is essential for survival of such conditions. In the olfactory system we have found intense HSP expression occurs during normal processing of environmental odorants/inhalants as well as following hyperthermia and drug exposure. The HSPs involved include ubiquitin, HSP70, HSC70, and HSP25. Responses are both cell type- and stress-specific, occurring primarily in olfactory supporting cells and to some extent in Bowman’s gland acinar cells. Responses to these stresses are not seen in olfactory sensory neurons. This article reviews those studies and the significance of their findings. It also discusses a distinct subpopulation of rat olfactory sensory neurons (OSNs), the 2A4(+)OSNs, found to be constitutively reactive with HSP70, the predominantly stress-inducible isoform of the 70 kD HSP family. Their high HSP70 expression appears to confer on the 2A4(+)OSNs an enhanced ability to survive damage-induced OSN turnover. New findings are also presented on HSP25-specific changes following olfactory bulbectomy. All data are discussed in the context of the overall olfactory and bioprotective functions of the olfactory mucosa.


Heat Shock Protein Olfactory Bulb Olfactory Epithelium Olfactory System Heat Shock Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AÏT-AÏSSA, S., PORCHER, J.-M., ARRIGO, A.-P & LAMBRÉ, C. (2000) Activation of the hsp70 promoter by environmental inorganic and organic chemicals: Relationships with cytotoxicity and lipophilicity. Toxicology 145, 147–157.PubMedCrossRefGoogle Scholar
  2. ALLEN, W. K. & AKESON, R. (1985) Identification of an olfactory receptor neuron subclass: Cellular and molecular analysis during development. Developmental Biology 109, 393–401.PubMedCrossRefGoogle Scholar
  3. AMICI, C., ROSSI, A. & SANTORO, M. G. (1995) Aspirin enhances thermotolerance in human erythroleukemic cells: An effect associated with the modulation of the heat shock response. Cancer Research 55, 452–457.Google Scholar
  4. AOKI, M., ABE, K., KAWAGOE, J., NAKAMURA, S. & KOGURE, K. (1993) Acceleration of HSP70 and HSC70 heat shock gene expression following transient ischemia in the preconditioned gerbil hippocampus. Journal of Cerebral Blood Flow and Metabolism 13, 781–784.PubMedGoogle Scholar
  5. ARMSTRONG, C. L., KRUEGER-NAUG, A. M., CURRIE, W. R. & HAWKES, R. (2000) Constitutive expression of heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex. Journal of Comparative Neurology 416, 383–397.PubMedCrossRefGoogle Scholar
  6. ARMSTRONG, C. L., KRUEGER-NAUG, A. M., CURRIE, W. R. & HAWKES, R. (2001) Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. Journal of Comparative Neurology 434, 262–274.PubMedCrossRefGoogle Scholar
  7. ARRIGO, A. P. & MEHLIN, P. (1994) Expression, cellular location and function of low molecular weight heat shock proteins (hsp20s) during development of the nervous system. In Heat Shock Proteins of the Nervous System (edited by MAYER, J. & BROWN, I.) pp. 145–167. New York: Academic Press.Google Scholar
  8. ASTIC. L., SAUCIER, D. & HOLLEY, A. (1987) Topographical relationships between olfactory receptor cells and glomerular foci in the rat olfactory bulb. Developmental Brain Research 424, 144–152.Google Scholar
  9. BAKER, H. & GENTER, M. B. (2003) The olfactory system and the nasal mucosa as portals of entry of viruses, drugs, and other exogenous agents. In Handbook of Olfaction and Gustation, 2nd Edition (edited by DOTY, R. L.) pp. 549–573. New York: Marcel Dekker.Google Scholar
  10. BAHRAMI, F., VAN HEZIK, C., BERGMAN, A. & BRANDT, I. (2000) Target cells for methylsulphonyl-2-6-dichlorobenzene in the olfactory mucosa in mice. Chemico-Biological Interactions 128, 97–113.PubMedCrossRefGoogle Scholar
  11. BARBE, M. F., TYTELL, M., GOWER, D. J. & WELCH, W. J. (1988) Hyperthermia protects against light damage in the rat retina. Science 241, 1817–1820.PubMedGoogle Scholar
  12. BATULAN, A., SHINDER, G. A., MINOTTI, S., HE, B. P., DOROUDCHI, M. M., NALBANTOGLU, J., STRONG, M. J. & DURHAM, H. D. (2003) High thresholds for induction of the stress response in motor neurons is associated with failure to activate HSF1. Journal of Neuroscience 23, 5789–5798.PubMedGoogle Scholar
  13. BERGSTRÖM, U., GIOVANETTI, A. PIRAS, E. & BRITTEBO, E. B. (2003) Methimazole-induced damage in the olfactory mucosa: Effects on ultrastructure and glutathione levels. Toxicologic Pathology 31, 379–387.PubMedCrossRefGoogle Scholar
  14. BIJUR, G. N., DAVIS, R. E. & JOPE, R. S. (1999) Rapid activation of heat shock factor 1 DNA binding by H2O2 and modulation by glutathione in human neuroblastoma and Alzheimer’s disease hybrid cells. Molecular Brain Research 71, 69–77.PubMedCrossRefGoogle Scholar
  15. BITTEBO, E. B. (1997) Metabolism-dependent activation and toxicity of chemicals in nasal glands. Mutation Research 380, 61–75.Google Scholar
  16. BOHEN, S. P., KRALLI, A. & YAMANOTO, K. (1995) Hold ’em and fold ’em: Chaperones and signal transduction. Science 268, 1303–1304.PubMedGoogle Scholar
  17. BRANDT, I., BRITTEBO, E. B., FEIL, V. J. & BAKKE, J. E., Jr. (1990) Irreversible binding and toxicity of the herbicide dichlobenil (2,6-dichlorobenzonitrile) in the olfactory mucosa of mice. Toxicology and Applied Pharmacology 103, 491–501.PubMedCrossRefGoogle Scholar
  18. BRITTEBO, E. B. (1997) Metabolism-dependent activation and toxicity of chemicals in nasal glands. Mutation Research 380, 61–75.PubMedGoogle Scholar
  19. BROWN, I. R. (1994) Induction of heat shock genes in the mammalian brain by hyperthemia and tissue injury. In Heat Shock Proteins in the Nervous System (edited by MAYER, J.& BROWN, I. R.) pp. 31–53. New York: Academic Press.Google Scholar
  20. BRUNJES, P. C. (1992) Lessons from lesions: The effects of olfactory bulbectomy. Chemical Senses 17, 729–763.Google Scholar
  21. CARR, V. McM. & FARBMAN, A. I. (1992) Ablation of the olfactory bulb upregulates the rate of neurogenesis and induces precocious death in the olfactory epithelium. Experimental Neurology 115, 55–59.PubMedCrossRefGoogle Scholar
  22. CARR, V. McM. & FARBMAN, A. I. (1993a) Effect of ketamine on stress protein immunoreactivities in rat olfactory mucosa. Neuroreport 5, 197–200.Google Scholar
  23. CARR, V. McM. & FARBMAN, A. I. (1993b) The dynamics of cell death in the olfactory epithelium. Experimental Neurology 124, 308–314.CrossRefGoogle Scholar
  24. CARR, V. McM. & FARBMAN, A. I. (1998) Initial development of a small subclass of rat olfactory receptor neurons characterized by antigenicity to HSP70. Annals of the New York Academy of Sciences 855, 240–243.PubMedCrossRefGoogle Scholar
  25. CARR, V. McM. & FARBMAN, A. I. (2001) Enhanced expression of HSP25 following olfactory bulbectomy. Chemical Senses 26, 1079.Google Scholar
  26. CARR, V. McM., MURPHY, S. P., MORIMOTO, R. I. & FARBMAN, A. I. (1994) Small subclass of rat olfactory neurons with specific bulbar projections is reactive with monoclonal antibodies to the HSP70 heat shock protein. Journal of Comparative Neurology 348, 150–160.PubMedCrossRefGoogle Scholar
  27. CARR, V. McM., MORIMOTO, R. I. & FARBMAN, A. I. (1999) Development and further characterization of a small subclass of rat olfactory receptor neurons that shows immunorectivity for the HSP70 heat shock protein. Journal of Comparative Neurology 404, 375–386.PubMedCrossRefGoogle Scholar
  28. CARR, V. McM., MENCO, B. P. M., YANKOVA, M. P., MORIMOTO, R. I. & FARBMAN, A. I. (2001) Odorants as cell-type specific activators of a heat shock response in the rat olfactory mucosa. Journal of Comparative Neurology 432, 425–439.PubMedCrossRefGoogle Scholar
  29. CARR, V. McM., RING, G., YOUNGENTOB, S. L., SCHWOB, J. E. & FARBMAN, A. I. (2004) Altered epithelial density and expansion of bulbar projections of a discrete HSP70 immunoreactive subpopulation of rat olfactory receptor neurons in reconstituting olfactory epithelium following exposure to methyl bromide. Journal of Comparative Neurology 469, 475–493.CrossRefGoogle Scholar
  30. CARR, V. McM., WALTERS, E., MARGOLIS, F. L. & FARBMAN, A. I. (1998) An enhanced olfactory marker protein immunoreactivity in individual olfactory receptor neurons following olfactory bulbectomy may be related to increased neurogenesis. Journal of Neurobiology 34, 377–390.PubMedCrossRefGoogle Scholar
  31. CHEETHAM, M. E., BRION, J.-P. & ANDERTON, B. H. (1994) Neuronal homologues of the bacterial heat shock protein DnaJ. In Heat Shock Proteins in the Nervous System (edited by MAYER, J. & BROWN, I.) pp. 169–190. New York: Academic Press.Google Scholar
  32. CHEN, Y., GETCHELL, M. L., DING, X. & GETCHELL, T. V. (1992) Immunolocalization of two cytochrome P450 isozymes in rat nasal chemosensory tissue. Neuroreport 3, 749–752.PubMedGoogle Scholar
  33. CHIESA, R., NOGUERA, I. & SREDY, J. (1997) Phosphorylation of HSP25 during lens cell differentiation. Experimental Eye Research 65, 223–229.PubMedCrossRefGoogle Scholar
  34. CHRISTIANSEN, M. D., HOLBROOK, E. H., COSTONZO, R. & SCHWOB, J. E. (2001) Rhinotopy is disrupted during the re-innervation of the olfactory bulb that follows transection of the olfactory nerve. Chemical Senses 26, 359–369.CrossRefGoogle Scholar
  35. COMETTO-MUñIZ, J. E. & CAIN, W. S. (1991) Influence of airborne contaminants on olfaction and the common chemical sense. In Smell and Taste in Health and Disease (edited by GETCHELL, T. V., DOTY, R. L., BARTOSHUK, L. M. & SNOW, J. B., JR.) pp. 765–785. New York: Raven Press.Google Scholar
  36. COSTANZO, R. (2000) Rewiring the olfactory bulb: Changes in odor maps following recovery from nerve transection. Chemical Senses 25, 199–205.PubMedCrossRefGoogle Scholar
  37. COSTIGAN, M., MANNION, R. J., KENDALL, G., LEWIS, S. E., CAMPAGNA, J. A., COGGESHALL, R. E., MERIDITH-MIDDLETON, J., TATE, S. & WOOLF, C. J. (1998) Heat shock protein 27: Developmental regulation and expression after peripheral injury. Journal of Neuroscience 18, 5891–5900.PubMedGoogle Scholar
  38. COSTIGAN, M., MARTIN, J. L., DILLMANN, W. H. & WOOLF, C. J. (1999) A role for HSP27 in sensory neuron survival. Journal of Neuroscience 19, 8945–8953.PubMedGoogle Scholar
  39. CROWLEY, J. R. & HOLLENBERG, P. F. (1995) Mechanism-based inactivation of rat liver cytochrome P4502B1 by phencyclidine and its oxidative product, the iminium ion. Drug Metabolism and Disposition 23, 786–793.PubMedGoogle Scholar
  40. DAHL, A. R. & HADLEY, W. M. (1991) Nasal cavity enzymes involved in xenobiotic metabolism: Effects on the toxicity of inhalant. Critical Reviews in Toxicology 21, 345–372.PubMedGoogle Scholar
  41. DING, X. & DAHL, A. R. (2003) Olfactory mucosa: Composition, enzymatic localization, and metabolism. In Handbook of Olfaction and Gustation, 2nd Edition (edited by DOTY, R. L.) pp. 51–73. New York: Marcel Dekker, Inc.Google Scholar
  42. DWYER, B. E. & NISHIMURA, R. N. (1994) Heat shock proteins and neuroprotection in CNS culture. In The Biology of Heat Shock Proteins and Molecular Chaperones (edited by MORIMOTO, R. I., TESSIÈRES, A. & GEORGOPOULOS, C.) pp. 417–455. Cold Spring Harbor: Cold Spring Harbor Press.Google Scholar
  43. EDBLADH, M., EKSTRÖM, P. A. R. & EDSTRÖM, A. (1994) Retrograde axonal transport of locally synthesized proteins, e.g., actin and heat shock protein 70 in regenerating adult frog sciatic sensory axons. Journal of Neuroscience Research 38, 424–432.PubMedCrossRefGoogle Scholar
  44. FAN, C.-Y., LEE, S. & CYR, D. M. (2003) Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress & Chaperones 8, 309–316.CrossRefGoogle Scholar
  45. FARBMAN, A. I. (1992) The Cell Biology of Olfaction. Cambridge, UK: Cambridge University Press. New York: Academic Press.Google Scholar
  46. FARBMAN, A. I., BUCHHOLZ, J., SUZUKI, Y., COINES, A. & SPEERT, D. (1999) A molecular basis of cell death in olfactory epithelium. Journal of Comparative Neurology 414, 306–314.PubMedCrossRefGoogle Scholar
  47. FAWCETT, D. W. (1981) The Cell, 2nd Edition pp. 338–339. Philadelphia: W. B. Saunders.Google Scholar
  48. FEINSTEIN, P., BOZZA, T., RODRIGUEZ, I., VASSALLI, A. & MOMBAERTS, P. (2004) Axon guidance of mouse olfactory sensory neurons by odorant receptors and the SS2 adrenergic receptor. Cell 117, 833–846.PubMedCrossRefGoogle Scholar
  49. FEINSTEIN, P. & MOMBAERTS, P. (2004) A contextural model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817–831.PubMedCrossRefGoogle Scholar
  50. FERNANDES, M., O’BRIEN, T. & LIS, J. T. (1994) Structure and regulation of heat shock gene promoters. In The Biology of Heat Shock Proteins and Molecular Chaperones (edited by MORIMOTO, R. I., TESSIÈRES, A., & GEORGOPOULOS, C.) pp. 375–393. Cold Spring Harbor: Cold Spring Harbor Press.Google Scholar
  51. FIELD, P. M., LI, Y. & RAISMAN, G. (2003) Ensheathment of the olfactory nerves in the adult rat. Journal of Neurocytology 32, 317–324.PubMedCrossRefGoogle Scholar
  52. FRANZÉN, A., CARLSSON, C., BRANDT, I. & BRITTEBO, E. B. (2003) Isomer-specific bioactivation and toxicity of dichlorophenyl methylsulphone in rat olfactory mucosa. Toxicologic Pathology 31, 364–372.PubMedCrossRefGoogle Scholar
  53. FRANZÉN, A. & BRITTEBO, E. B. (2005) Toxicant-induced ER-stress and caspase activtion in the olfactory mucosa. Archives of Toxicology 79, 561–570.PubMedCrossRefGoogle Scholar
  54. GENTER, M. B., DEAMER-MELIA, N. J, WETMORE, B. A., MORGAN, K. T. & MEYER, S. A. (1998) Herbicides and olfactory/neurotoxicity responses. Reviews in Toxicology 2, 83–112.Google Scholar
  55. GERNOLD, M., KNAUF, U., GAESTEL, M., STAHL, J. & KLOETZEL, P.-M. (1993) Development and tissue specific distribution of mouse small heat shock protein hsp25. Developmental Genetics 14, 103–111.PubMedCrossRefGoogle Scholar
  56. GETCHELL. M. L. & MELLERT, T. K. (1991) Olfactory mucus secretion. In Smell and Taste in Health and Disease (edited by GETCHELL, T. V., DOTY, R. L., BARTOSHUK, L. M. & SNOW, J. B., JR.) pp. 83–95. New York: Raven Press.Google Scholar
  57. GETCHELL, T. V., RAMA KRISHNA, N. S., DHOOPER, N., SPARKS, D. L. & GETCHELL, M. L. (1995) Human olfactory receptor neurons express heat shock protein 70: Age-realted trends. Annals of Otology, Rhinology & Laryngology 104, 47–56.Google Scholar
  58. GETCHELL, M. L., ZIELINSKI, B. & GETCHELL, T. V. (1988) Odorant and autonomic regulation of secretion in the olfactory mucosa. In Molecular Neurobiology of the Olfactory System (edited by MARGOLIS, L. M. & GETCHELL, T. V.) pp. 71–98. New York: Plenum Press.Google Scholar
  59. GLOVER, J. R. & LINDQUIST, S. (1998) Hsp104, hsp70, and hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82.PubMedCrossRefGoogle Scholar
  60. GRAZIADEI, P. P. C. (1971) The olfactory system of vertebrates. In Handbook of Sensory Physiology, Vol. IV. Chemical Senses, 1. Olfaction (edited by BEIDLER, L.) pp. 27–58. Berlin: Springer-Verlag.Google Scholar
  61. GRAZIADEI, P. P. C. & METCALF, J. F. (1971) Autoradiographic and ultrastructural observations on the frog’s olfactory mucosa. Zeitschrift für Zellforschung und Mikroskopische Anatomie 115, 305–318.CrossRefGoogle Scholar
  62. GRAZIADEI, P. P. C. & MONTI GRAZIADEI, G. A. (1978) Continuous nerve cell renewal in the olfactory system. In Handbook of Sensory Physiology, Vol. IX. The Development of Sensory Systems (edited by JACOBSON, M.) pp. 55–82. Berlin: Springer-Verlag.Google Scholar
  63. GUkbhNAL, I., SIDOT-de FRAISSE, C., GAUMER, S. & MIGNOTTE, B. (1997) Bcl-2 and Hsp27 act at different levels to suppress programmed cell death. Oncogene 15, 347–360.CrossRefGoogle Scholar
  64. GUZHOVA, I., KISLYAKOVA, K., MOSKALIOVA, O., FRIDLANSKAYA, I., TYTELL, M., CHEETHAM, M. & MARGULIS, B. (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Research 914, 66–73.PubMedCrossRefGoogle Scholar
  65. HARDISTY, J. R., GARMAN, R. H., HARKEMA, J. R., LOMAX, L. G. & MORGAN, K. T. (1999) Histopathology of nasal olfactory mucosa from selected inhalations toxicity studies conducted with volatile chemicals. Toxicologic Pathology 27, 618–627.PubMedGoogle Scholar
  66. HARTL, F. U. (1996) Molecular chaperones in protein folding. Nature 381, 571–579.PubMedCrossRefGoogle Scholar
  67. HARTL, F. U. & HEYER-HARTL, M. (2002) Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295, 1852–1858.PubMedCrossRefGoogle Scholar
  68. HASTINGS, L. & EVANS, J. E. (1991) Olfactory primary neurons as a route of entry for toxic agents into the CNS. Neurotoxicology 12, 707–714.PubMedGoogle Scholar
  69. HASTINGS, L. & MILLER, M. L. (2003) Influence of environmental toxicants on olfactory function. In Handbook of Olfaction and Gustation, 2nd Edition (edited by DOTY, R. L.) pp. 575–591. New York: Marcel Dekker.Google Scholar
  70. HEGG, C. C. & LUCERO, M. T. (2006) Purinergic receptor antagonists inhibit odorant-induced heat shock 25 induction in mouse olfactory epithelium. Glia 52, 182–190.CrossRefGoogle Scholar
  71. HICKE, L. (1999) Gettin’ down with ubiquitin: Turning off cell-surface receptors, transporters, and channels. Trends in Cell Biology 9, 107–112.PubMedCrossRefGoogle Scholar
  72. HINDS, J. W., HINDS, P. L. & McNELLY, N. A. (1984) An autoradiographic study of mouse olfactory epithelium: Evidence for long-lived receptors. Anatomical Record 210, 375–383.PubMedCrossRefGoogle Scholar
  73. HOLMBERG, C. I, TRAN, S. E. F., ERIKSSON, J. E. & SISTONEN, L. (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends in Biochemical Sciences 27, 619–627.PubMedCrossRefGoogle Scholar
  74. HOLSZTYNSKA, E. J. & DOMINO, E. F. (1986) Biotransformation of phencyclidine. Drug Metabolism Reviews 16, 285–320.Google Scholar
  75. HUOT, J., ROY, G., LAMBERT, H., CHRÉTIEN, P. & LANDRY, J. (1991) Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human 27,000 heat shock protein. Cancer Research 51, 5245–5252.PubMedGoogle Scholar
  76. IWEMA, C. L. (2001) Patterns of odorant receptor expression and axonal projection in the lesion-recovered peripheral olfactory system. PhD thesis. State University Upstate Medical University, Syracuse, N.Y.Google Scholar
  77. IWEMA, C. L., FANG, H., KURTZ, D., YOUNGENTOB, S. L. & SCHWOB, J. E. (2004) Odorant receptor expression patterns are restored in lesion-recovered rat olfactory epithelium. Journal of Neuroscience 24, 356–369.PubMedCrossRefGoogle Scholar
  78. JÄÄTTELÄ, M., WISSIG, D., KOKHOLM, K., KALLUNKI, T. & EGEBLAD, M. (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. European Molecular Biology Organization Journal 12, 6124–6134.Google Scholar
  79. JAKOB, U., GAESTEL, M., ENGEL, K. & BUCHNER, J. (1993) Small heat shock proteins are molecular chaperones. Journal of Biological Chemistry 268, 517–1520.Google Scholar
  80. JOURDAN, F. & ARRIGO, A.-P. (1999) Small stress protein Hsp27 accumulation during dopamine-mediated differentiation of rat olfactory neurons counteracts apoptosis. Cell Death and Differentiation 6, 227–233.PubMedCrossRefGoogle Scholar
  81. JUREVICH, D. A., SISTONEN, L., KROES, R. A. & MORIMOTO, R. I. (1992) Effect of sodium salicylate on the human heat shock response. Science 255, 1243–1245.Google Scholar
  82. JUREVICH, D. A., SISTONEN, L., SARGE, K. D. & MORIMOTO, R. I. (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proceedings of the National Academy of Science USA 91, 2280–2284.CrossRefGoogle Scholar
  83. KIRSTEIN, C. L., COOPERSMITH, R., BRIDGES, R. J. & LEON, M. (1991) Glutathione levels in olfactory and non-olfactory neural structures of rats. Brain Research 543, 341–346.PubMedCrossRefGoogle Scholar
  84. KITAGAWA, B., MATSUMOTO, M., TAGAYA, M., KUWABARA, K., HATA, R., HANDA, N., FUKUNAGA, R., KIMURA, K. & KAMADA, T. (1991) Hyperthermia-induced neuronal protection against ischemic injury in gerbils. Journal of Cerebral Blood Flow and Metabolism 11, 449–452.PubMedGoogle Scholar
  85. KLEMENZ, R., ANDRES, A.-C., FRÖHLI, E., SCHÄFER, R. & ANOYAMA, A. (1993) Expressioon of the murine small heat shock proteins hsp25 and αB crystallin in the absense of stress. Journal of Cell Biology 120, 639–645.PubMedCrossRefGoogle Scholar
  86. KOMAROVA, E. Y., AFANASYEVA, E. A., BULATOVA, M. M., CHEETHAM, M. E., MARGULIS, B. A. & GUZHOVA, I. V. (2004) Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone Hsp70. Cell Stress & Chaperones 9, 265–275.CrossRefGoogle Scholar
  87. LAND, L. J. (1973) Localized projections of olfactory nerves to rabbit olfactory bulb. Brain Research 63, 153–166.PubMedCrossRefGoogle Scholar
  88. LAND, L. J. & SHEPHERD, G. M. (1974) Autoradiographic analysis of olfactory receptor projections in the rabbit. Brain Research 70, 506–510.PubMedCrossRefGoogle Scholar
  89. LAVOIE, J. N., GRINGAS-BRETON, G., TANGUAY, R. M. & LANDRY, J. (1993a) Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. Journal of Biological Chemistry 268, 3420–3429.Google Scholar
  90. LAVOIE, J. N., LAMBERT, H., HICKEY, H., WEBER, L. A. & LANDRY, J. (1993b) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Molecular and Cellular Biology 15, 505–516.Google Scholar
  91. LAZARD, D., ZUPKO, K., PORIA, Y., NEF, P., LAZAROVITS, J., HORN, S., KHEN, M. & LANCET, D. (1991) Odorant signal termination by olfactory UDP glucuronosyl transferase. Nature 349, 790–793.PubMedCrossRefGoogle Scholar
  92. LEE, B. S., CHEN, C., ANGELIDIS, D. A., JUREVICH, D. A. & MORIMOTO, R. I. (1995) Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proceedings of the National Academy of Science USA 92, 7207–7211.CrossRefGoogle Scholar
  93. LIEBICH, H. G. (1975) Zum Bau der oberen Luftwege der weissen Ratte (Mus rattus norvegicus var. albinos). Anatomischer Anzeiger 138, 170–179.PubMedGoogle Scholar
  94. LEICHT, B. G., BIESSMANN, H., PALTER, B. K. & BONNER, J. J. (1986) Small heat shock proteins of Drosophila associate with the cytoskeleton. Proceedings of the National Academy of Sciences USA 83, 90–94.CrossRefGoogle Scholar
  95. LEWIS, J. L. & DAHL, A. R. (1995) Olfactory mucosa: Composition, enzymatic location, and metabolism. In Handbook of Olfaction and Gustation (edited by DOTY, R. L.) pp 33–52. New York: Marcel Dekker.Google Scholar
  96. LEWIS, S. E., MANNION, R. J., WHITE, F. A., COGGESHALL, R. E., BEGGS, S., COSTIGAN, M., MARTIN, J. L., DILLMANN, W. H. & WOOLF, C. J. (1999) A role for HSP27 in sensory neuron survival. Journal of Neuroscience 19, 8945–8953.PubMedGoogle Scholar
  97. LI, G. C. & WERB, Z. (1982) Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proceedings of the National Academy of Science USA 79, 3218–3222.CrossRefGoogle Scholar
  98. LOO, A. T., YOUNGENTOB, S. L., KENT, P. F. & SCHWOB, J. E. (1996) The aging olfactory epithelium: Neurogenesis, response to damage, and odorant-induced activity. International Journal of Developmental Neuroscience 14, 881–900.PubMedCrossRefGoogle Scholar
  99. MACKAY-SIM, A. & KITTEL, P. W. (1991) On the life span of olfactory receptor neurons. European Journal of Neuroscience 3, 209–215.PubMedCrossRefGoogle Scholar
  100. MARCUCCILLI, C. J., MATHUR, S. K., MORIMOTO, R. I. & MILLER, R. J. (1996) Regulatory differences in the stress response of hippocampal neurons and glial cells after heat shock. Journal of Neuroscience 16, 478–485.PubMedGoogle Scholar
  101. MARX, J. E. (2002) Ubiquitin lives up to its name. Science 297, 1792–1794.PubMedCrossRefGoogle Scholar
  102. MAYER J. & BROWN, I. (editors) (1994) Heat Shock Proteins in the Nervous System. New York: Academic Press.Google Scholar
  103. McDONOUGH, H. & PATTERSON, C. (2003) CHIP: A link between the chaperone and proteasome systems. Cell Stress & Chaperones 8, 303–308.CrossRefGoogle Scholar
  104. MEHLIN, P., CORONAS, V., LJUBIC-THIBAL, V., DUCASSE, C., GRANGER, L., JOURDAN, F. & ARRIGO, A.-P. (1999) Small stress protein Hsp27 accumulation during dopamine-mediated differentiation of rat olfactory neurons counteracts apoptosis. Cell Death and Differentiation 6, 227–233.CrossRefGoogle Scholar
  105. MEHLIN, P., HICKEY, E., WEBER, L. A. & ARRIGO, A.-P. (1997) Large unphosphorylated aggregates as the active form of hsp27 which control intracellular reactive oxygen species and glutathione levels and generates a protection against TNFα in NIH-3T3-ras cells. Biochemical and Biophysiological Research Communications 241, 187–192.CrossRefGoogle Scholar
  106. MEHLIN, P., KRETZ-REMY, C., PRÉVILLE, X. & ARRIGO, A.-P. (1996a) Human hsp27, Drosophila hsp27 and human αB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFα-induced cell death. European Molecular Biology Organization Journal 15, 2695–2706.Google Scholar
  107. MEHLIN, P., SCHULTZE-OSTHOFF, K. & ARRIGO, A.-P. (1996b) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks FAS/APO-1-and staurosporine-induced cell death. Journal of Biological Chemistry 28, 16510–16514.Google Scholar
  108. MEISTER, A. & ANDERSON, M. E. (1983) Glutathione. Annual Reviews of Biochemistry 52, 711–760.CrossRefGoogle Scholar
  109. MENCO, B. Ph. M. (1995) Freeze-fracture, deep-etch, and freeze-substitution studies of olfactory epithelia, with special emphasis on immunocytochemical variables. Microscopy Research and Technique 32, 337–356.PubMedCrossRefGoogle Scholar
  110. MENCO, B. Ph. M. & MORRISON, E. E. (2003) Morphology of the mammalian olfactory epithelium: Form, fine structure, function, and pathology. In Handbook of Olfaction and Gustation, 2nd Edition (edited by DOTY, R. L.) pp. 17–49. New York: MarcelDekker.Google Scholar
  111. MORELEY, J. F. & MORIMOTO, R. I. (2004) Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Molecular Biology of the Cell 15, 657–664.CrossRefGoogle Scholar
  112. MORI, K., FIJITA, S. C., IMAMURA, K. & OBATA, K. (1985) Immunohistochemical study of subclasses of olfactory nerve fibers and their projections to the olfactory bulb in the rabbit. Journal of Comparative Neurology 242, 214–229.PubMedCrossRefGoogle Scholar
  113. MORIMOTO, R. I. (1998) Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes & Development 12, 3788–3796.Google Scholar
  114. MORIMOTO, R. I. JUREVICH, D. A. KROEGER, P. E., MATHUR, S. K., MURPHY, S. P., NAKAI, A., SARGE, K., ABRVAYA, K. & SISTONEN, L. T. (1994a) Regulation of heat shock gene transcription by a family of heat shock factors. In The Biology of Heat Shock Proteins and Molecular Chaperones (edited by MORIMOTO, R. I., TESSIÉRES, A., & GEORGOPOULOS, C.) pp. 417–455. Cold Spring Harbor: Cold Spring Harbor Press.Google Scholar
  115. MORIMOTO, R. I. & SANTORO, M. G. (1998) Stress-inducible responses of heatshock proteins: New pharmacological targets for cytoprotection. Nature Biotechnology 16, 833–838.PubMedCrossRefGoogle Scholar
  116. MORIMOTO, R. I., TESSIERES, A. & GEORGOPOULOS, C. (editors) (1990) Stress Proteins in Biology and Medicine. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  117. MORIMOTO, R. I., TESSIERES, A. & GEORGOPOULOS, C. (editors) (1994b) The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  118. MOULTON, D. G., dayak CELEBI, G. & FINK, R. P. (1970) Olfaction in mammals- two aspects: Proliferation of cells in the olfactory epithelium and sensitivity to odours. In Ciba Foundation Symposium on Taste and Smell in Vertebrates (edited by WOLSTENHOLME, G. W. E., & KNIGHT, J.) pp. 227–250. London:Churchill.Google Scholar
  119. NAGURO, T. & IWASHITA, K. (1992) Olfactory epithelium in young adult and aging rats as seen with high-resolution scanning elcestron microscopy. Microscopy Research and Technique 23,62–75.PubMedCrossRefGoogle Scholar
  120. NEF, P., HELDMAN, J., LAZARD, D., MARGALIST, T., JAYE, M., HANUKOGLU, I. & LANCET, D. (1989) Olfactory-specific cytochrome P-450. Journal of Biological Chemistry 264, 6780–6785.PubMedGoogle Scholar
  121. NEININGER, A. & GAESTEL, M. (1998) Evidence for a hsp25-specific mechanism involved in transcriptional activation by heat shock. Experimental Cell Research 242, 285–293.PubMedCrossRefGoogle Scholar
  122. Neuhaus, E. M., Mashukova, A., Zhang, W., Barbour, J. & Hatt, H. (2006) A specific heat shock protein enhances the expression of mammalian olfactory receptor proteins. Chemical Senses ONLINE 3/24/06.Google Scholar
  123. OKANO, M. & TAGAKI, S. F. (1974) Secretion and electrogenesis of the supporting cell in the olfactory epithelium. Journal of Physiology 242, 353–370.PubMedGoogle Scholar
  124. ORLOWSKI, R. Z. (1999) The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death and Differentiation 6, 303–313.PubMedCrossRefGoogle Scholar
  125. OSAWA, Y. & COON, M. J. (1989) Selective mechanism-based inactivation of the major phenobarbital inducible P-450 cytochrome from rabbit liver by phencyclidine and its oxidation product, the iminuim compound. Drug Metabolism and Disposition 17, 7–13.PubMedGoogle Scholar
  126. PERNG, M. D., CAIRNS, L., VAN ISSEL, P., PRESCOTT, A. & HUTCHESON, A. M. (1999) Intermediate filament interactions can be altered by HSP27 and αB-crystallin. Journal of Cell Science 112, 2099–2112.PubMedGoogle Scholar
  127. PETERS, J.-M., HARRIS, J. R. & FINDLEY, D. (editors) (1997) Ubiquitin and the Biology of the Cell. New York: Plenum Press.Google Scholar
  128. PIRAS, E., FRANZÉN, A., FERNÁNDEZ, E. L., BERGSTRÖM, U., RAFFALLI-MATHIEU, F., LANG, M. & BRITTEBO, E. B. (2003) Cell-specific expression of CYP2A5 in the mouse respiratory tract; effects of olfactory toxicants. Journal of Histochemistry & Cytochemistry 51, 1545–1555.Google Scholar
  129. PLENDL, J. & SCHMAHL, W. (1988) Dolichos biflorus agglutinin: A marker of the developing olfactory system in the NMRI-mouse strain. Anatomy and Embryology 177, 459–464.PubMedCrossRefGoogle Scholar
  130. PLUMIER, J.-C., HOPKINS, D. A., ROBERTSON, H. A. & CURRIE, W. R. (1997) Constitutive expression of the 27-kDa heat shock protein HSP27 in sensory and motor neurons of the rat nervous system. Journal of Comparative Neurology 384, 409–428.PubMedCrossRefGoogle Scholar
  131. RAMA KRISHNA, N. S., GETCHELL, M. L., TATE, S. L., MARGOLIS, F. L. & GETCHELL, T. V. (1992) Glutathione and γ-glutamyl transpeptidase are differentially distributed in the olfactory mucosa of rats. Cell and Tissue Research 270, 475–484CrossRefGoogle Scholar
  132. REED, C. J. (1993) Drug metabolism in the nasal cavity: Relevance to toxicology. Drug Metabolism Reviews 25, 173–205.PubMedGoogle Scholar
  133. REED, D. J. (1990) Glutathione: Toxicological implications. Annual Reviews in Pharmacology and Toxicology 30, 603–631.CrossRefGoogle Scholar
  134. RESSLER, K. J., SULLIVAN, S. L. & BUCK, L. B. (1993) A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73, 597–609.PubMedCrossRefGoogle Scholar
  135. RESSLER, K. J., SULLIVAN, S. L. & BUCK, L. B. (1994) Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255.PubMedCrossRefGoogle Scholar
  136. ST JOHN, J. A. & KEY, B. (2003) Axon mis-targeting in the olfactory bulb during regeneration of olfactory neuroepithelium. Chemical Senses 28, 773–779.PubMedCrossRefGoogle Scholar
  137. SALMINEN, W. F., Jr., ROBERTS, S. M., FENNA, M. & VOELLMY, R. (1997a) Heat shock protein induction in muring liver after acute treatment with cocaine. Hepatology 25, 1147–1153.CrossRefGoogle Scholar
  138. SALMINEN, W. F., Jr., VOELLMY, R. & ROBERTS, S. M. (1997b) Differential heat shock protein induction by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. Journal of Pharmacology and Experimental Therapeutics 282, 1533–1540.Google Scholar
  139. SCHEUFLER, C., BRINKER, A., BOURENKOV, G., PEGORARA, S., MORODER, L., BARTUNIK, H., HARTL, F. U. & MOAREFI, I. (2000) Structur of TPR domain-peptide complexes: Critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210.PubMedCrossRefGoogle Scholar
  140. SCHUMACHER, R. J., HANSEN, W. J., FREEMAN, B. C., ALNEMRI, E., LITWACK, G. & TOFT, D. O. (1996) Cooperative action of hsp70, hsp90, and DnaJ proteins in protein renaturation. Biochemistry 35, 14889–14890.PubMedCrossRefGoogle Scholar
  141. SCHWOB, J. E. & GOTTLIEB, D. I. (1986) The primary olfactory projection has two chemically distinct zones. Journal of Neuroscience 6, 3393–3404.PubMedGoogle Scholar
  142. SCHWOB, J. E., MIELESZKO SZUMONOWSKI, K. E. & STASKY, A. A. (1992) Olfactory neurons are trophically dependent on the olfactory bylb for their prolonged survival. Journal of Neuroscience 12, 3896–3919.PubMedGoogle Scholar
  143. SCHWOB, J. E., YOUNGENTOB, S. L. & MEIRI, K. F. (1994) On the formation of neuromata in the primary olfactory projection. Journal of Comparative Neurology 340, 361–380.PubMedCrossRefGoogle Scholar
  144. SCHWOB, J. E., YOUNGENTOB, S. L. & MEZZA, R. C. (1995) Reconstitution of the olfactory epithelium after methyl bromide-induced lesion. Journal of Comparative Neurology 359, 14–37.CrossRefGoogle Scholar
  145. SCHWOB, J. E., YOUNGENTOB, S. L., RING, G., IWEMA, C. L. & MEZZA, R. C. (1999) Reinnervation of the rat olfactory bulb after methyl bromide-induced lesion: Timing and the extent of reinnervation. Journal of Comparative Neurology 412,439–457.PubMedCrossRefGoogle Scholar
  146. SHELLER, R. A., SMYERS, M. E., GROSSFELD, R. M., BALLLINGER, M. L. & BITTNER, G. D. (1998) Heat-shock proteins in axoplasm: High constitutive levels and transfer of inducible isoforms from glia. Journal of Comparative Neurology 396, 1–11.PubMedCrossRefGoogle Scholar
  147. SHIBA, D. & SHIMAMATO, N. (1999) Attenuation of endogenous oxidative stress-induced cell death by cytochrome P450 inhibitors in primary cultures of rat hepatocytes. Free Radical Biology and Medicine 27, 1019–1026.PubMedCrossRefGoogle Scholar
  148. SHIPLEY, M. T. (1985) Transport of molecules from nose to brain: Transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Research Bulletin 15, 129–143.PubMedCrossRefGoogle Scholar
  149. SREEDHAR, A. S. & CSERMELY, P. (2004) Heat shock proteins in the regulation of apoptosis: New strategies in tumor therapy a comprehensive review. Pharmacology & Therapeutics 101, 227–257.CrossRefGoogle Scholar
  150. SIMPSON, S. A., ALEXANDER, D. J. & REED, C. J. (2004) Heat shock protein 70 in the rat nasal cavity: Localisation and response to hyperthermia. Archives of Toxicology 78, 344–350.PubMedCrossRefGoogle Scholar
  151. SIMPSON, S. A., ALEXANDER, D. J. & REED, C. J. (2005) Induction of heat shock protein in rat olfactory epithelium by toxic chemicals: In vitro and in vivo studies. Archives of Toxicolgy 79, 224–230.CrossRefGoogle Scholar
  152. STARCEVIC, S. L., MURUGANANDAM, A., MUTUS, B. & ZIELINSKI, B. S. (1993) Glutathione in the olfactory mucosa of rainbow trout (Oncorhyncus mykiss). Chemical Senses 18, 57–65.Google Scholar
  153. STEWART, W. B. & PETERSEN, P. E. (1987) The spatial organization of olfactory nerve projections. Brain Research 411, 248–258.PubMedCrossRefGoogle Scholar
  154. STROTMANN, J., WANNER, I., HELFRICH, T. & BREER, H. (1995) Receptor expression in olfactory neurons during rat development: In situ hybridization studies. European Journal of Neuroscience 7, 492–500.PubMedCrossRefGoogle Scholar
  155. SUBJECK, J. R., SCIANDRA, J. J, JOHNSON, M. S. & JOHNSON, R. J. (1982) Heat shock proteins and thermotolerance: A comparison of induction kinetics. British Journal of Radiology 55, 579–584.PubMedCrossRefGoogle Scholar
  156. SULLIVAN, S. L., BOHM, S., RESSLER, K. J., HOROWITZ, L. F. & BUCK, L. B. (1995) Target-independent pattern specification in the olfactory epithelium. Neuron 15, 779–789.PubMedCrossRefGoogle Scholar
  157. SUZUKI, Y. & FARBMAN, A. I. (2000) Tumor necrosis factor-alpha-induced apoptosis in olfactory epithelium in vitro: possible roles of caspase 1 (ICE), caspase 2 (ICH-1) and caspase 3 (CPP32). Experimental Neurolology 165, 35–45.CrossRefGoogle Scholar
  158. SUZUKI, Y., SHAFER, J. & FARBMAN, A. I. (1995) Phagocytic cells in the rat olfactory epithelium after bulbectomy. Experimental Neurology 136, 225–233.PubMedCrossRefGoogle Scholar
  159. SUZUKI, Y., TAKEDA, M. & FARBMAN, A. I. (1996) Supporting cells as phagocytes in the olfactory epithelium after bulbectomy. Journal of Comparative Neurology 376, 509–517.PubMedCrossRefGoogle Scholar
  160. TANGUAY, R. M., WU, Y. & KHANDJIAN, E. W. (1993) Tissue-specific expression of heat shock proteins of the mouse in the absence of stress. Developmental Genetics 14, 112–118.PubMedCrossRefGoogle Scholar
  161. THORNHILL, R. A. (1979) Cell division in the olfactory epithelium of the lamprey, Lampetra fluviatilis. Zeitschrift für Zellforschung und Mikroskopische Anatomie 109, 147–157.CrossRefGoogle Scholar
  162. TIDWELL, J. L., HOUENOU, L. J. & TYTELL, M. (2004) Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell Stress & Chaperones 9, 88–98.CrossRefGoogle Scholar
  163. TJÄLVE, H., HENRIKSSON, J., TALKVIST, J., LARSSON, B. S. & LINDQUIST, N. G. (1991) Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacology & Toxicology 79, 347–356.CrossRefGoogle Scholar
  164. TRINKLEIN, N. D., CHEN, W. C., KINGSTON, R. E. & MYERS, R. M. (2004a) Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Cell Stress & Chaperones 9, 21–28.CrossRefGoogle Scholar
  165. TRINKLEIN, N. D., MURRAY, J. I., HARTMAN, S. J., BOTSTIEN, D. & MYERS, R. M. (2004b)The role of heat shock transcription factory 1 in the genome-wide regulation of the mammalian heat shock response. Molecular Biology of the Cell 15, 1254–1261.CrossRefGoogle Scholar
  166. TYTELL, M. (1994) Heat shock proteins in the retina and optic nerve. In Heat Shock Proteins in the Nervous System (edited by MAYER, J. & BROWN, I. R.) pp. 83–100. New York: Academic Press.Google Scholar
  167. TYTELL, M., GREENBERG, S. G. LASEK, R. J. (1986) Heat shock-like protein is transferred from glia to axon. Brain Research 363, 161–164.PubMedCrossRefGoogle Scholar
  168. VASSAR, R., NGAI, J. & AXEL, R. (1993) Spatial segregation of olfactory receptor expression in the mammalian olfactory epithelium. Cell 74, 309–318.PubMedCrossRefGoogle Scholar
  169. VAYESSIER, M. & POLLA, B. S. (1998) Heat shock proteins chaperoning life and death. Cell Stress & Chaperones 3, 221–227.CrossRefGoogle Scholar
  170. VOELLMY, R. (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress & Chaperones 9, 122–133.CrossRefGoogle Scholar
  171. VOIGT, J. M., GUENGERICH, F. P. & BARON, J. (1985) Localization of a cytochrome P-450 isozyme (cytochrome P-450 PB-B) and NADPH-cytochrome P-450 reductase in rat nasal mucosa. Cancer Letters 27, 241–247.PubMedCrossRefGoogle Scholar
  172. WAGSTAFF, M. J. D., COLLACO-MORAES, Y., SMITH, J., de BELLEROCHE, J. S., COFFIN, R. S. & LATCHMAN, D. S. (1999) Protection of neuronal cells from apoptosis with a herpes simplex virus-based vector. Journal of Biological Chemistry 274, 5061–5069.PubMedCrossRefGoogle Scholar
  173. WANG, F., NEMES, A., MENDELSOHN, M. & AXEL, R. (1998) Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60.PubMedCrossRefGoogle Scholar
  174. WEGELE, H., MÜLLER, L. & BUCHNER, J. (2004) Hsp70 and Hsp90 a relay team for protein folding. Reviews of Physiology, Biochemistry and Pharmacology 151, 1–44.PubMedCrossRefGoogle Scholar
  175. WEIFFENBACH, J. M. (1991) Chemical senses in aging. In Smell and Taste in Health and Disease (edited by GETCHELL, T. V., DOTY, R. L., BARTOSHUK, L. M. & SNOW, J. B., JR.) pp. 369–378. New York: Raven Press.Google Scholar
  176. WEILER, E. & FARBMAN, A. I. (1997) Proliferation in the rat olfactory epithelium: Age-dependent changes. Journal of Neuroscience 17, 3620–3622.Google Scholar
  177. WEILER, E. & FARBMAN, A. I. (1998) Supporting cell proliferation in the olfactory epithelium decreases postnatally. Glia 22, 315–328.PubMedCrossRefGoogle Scholar
  178. WETMORE, B. A., MITCHELL, A. D., MEYER, S. A. & GENTER, M. B. (1999) Evidence for site-specific bioactivation of alachlor in the olfactory epithelium of the Long-Evans rat. Toxicological Sciences 49, 202–212.PubMedCrossRefGoogle Scholar
  179. WU, C., CLOS, J., GIORGI, G., HAROUN, R. I., KIM, S.-J., RABINDRAN, S. K., WESTWOOD, J. T., WIESIEWSKI, J. & YIM, G. (1998) Structure and regulation of heat shock transcription factor. In The Biology of Heat Shock Proteins and Molecular Chaperones (edited by MORIMOTO, R. I., TESSIÈRES, A. & GEORGOPOULOS, C.) pp. 395–416. Cold Spring Harbor: Cold Spring Harbor Press.Google Scholar
  180. ZAVIALOV, A. V., GAESTEL, M., KORPELA, T. & ZAV’YALOV, V. P. (1998) Thiol/disulfide exchange between small heat shock protein 25 and glutathione. Biochemica Biophysica Acta 1388, 123–132.Google Scholar
  181. ZHANG, X., ROGERS, M., TIAN, H., ZHANG, X., ZHOU, D.-J., LIU, J., MA, M., SHEPHERD, G. M. & FIRESTEIN, S. J. (2004) High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proceedings of the National Academy of Science USA 101, 14168–14173.CrossRefGoogle Scholar
  182. ZIELINSKI, B. S., GETCHELL, M. L. & GETCHELL, T. V. (1988) Ultrastuctural characteristics of sustentacular cells in control and odorant-treated olfactory mucosae of the salamander. Anatomical Record 221, 769–779.PubMedCrossRefGoogle Scholar
  183. ZUPKO, K., PORIA, Y. & LANCET, D. (1991) Immunolocalization of cytochromes P-450olf1 and P-450olf2 in rat olfactory mucosa. European Journal of Biochemistry 196, 51–58.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Neurobiology and PhysiologyNorthwestern UniversityEvanston
  2. 2.Department of Otolaryngology-Head and Neck Surgery, Feinberg School of MedicineNorthwestern UniversityChicago

Personalised recommendations