Networks and Spatial Economics

, Volume 15, Issue 3, pp 823–842 | Cite as

Effects of Countdown Displays in Public Transport Route Choice Under Severe Overcrowding

  • Valentina Trozzi
  • Guido Gentile
  • Ioannis Kaparias
  • Michael G. H. Bell


The paper presents a route choice model for dynamic assignment in congested, i.e. overcrowded, transit networks where it is assumed that passengers are supported with real-time information on carrier arrivals at stops. If the stop layout is such that passenger congestion results in First-In-First-Out (FIFO) queues, a new formulation is devised for calculating waiting times, total travel times and route splits. Numerical results for a simple example network show the effect of information on route choice when heavy congestion is observed. While the provision of information does not lead to a remarkable decrease in total travel time, with the exception of some particular instances, it changes the travel behaviour of passengers that seem to be more averse to queuing at later stages of their journey and, thus, prefer to interchange at less congested stations.


Public transport Dynamic assignment Online information Passengers’ queues 


  1. Billi C, Gentile G, Nguyen S, Pallottino S, Barrett K (2004) Rethinking the wait model at transit stops. Proceedings of TRISTAN V - Triennial Symposium on Transportation Analysis, 2004Google Scholar
  2. Black JA, Paez A, Suthanaya PA (2002) Sustainable urban transportation: performance indicators and some analytical approaches. J Urban Plan Dev 128(4):184–192Google Scholar
  3. Bouzaïene-Ayari B (1988) Modélisation des arrêts multiples d’autobus pour les réseaux de transport en commun., École Polytechnique de MontréalGoogle Scholar
  4. Bouzaïene-Ayari B, Gendreau M, Nguyen S (2001) Modeling bus stops in transit networks:a survey and new formulations. Transp Sci 35:304–321CrossRefMATHGoogle Scholar
  5. Cantarella GE (1997) A general fixed-point approach to multi-mode multi-user equilibrium assignment with elastic demand. Transp Sci 31(2):107–120Google Scholar
  6. Cepeda M, Cominetti R, Florian M (2006) A frequency-based assignment model for congested transit networks with strict capacity constraints: characterization and computation of equilibria. Transp Res B Methodol 40:437–459CrossRefGoogle Scholar
  7. Chabini I (1998) Discrete dynamic shortest path problems in transportation applications: complexity and algorithms with optimal running time. Transp Res Rec J Trans Res Board 1645:170–175CrossRefGoogle Scholar
  8. Chriqui C, Robillard P (1975) Common bus lines. Transp Sci 9:115–121CrossRefGoogle Scholar
  9. Cominetti R, Correa J (2001) Common-lines and passenger assignment in congested transit networks. Transp Sci 35:250–267CrossRefMATHGoogle Scholar
  10. De Cea J, Fernandez E (1993) Transit assignment for congested public transport systems: an equilibrium model. Transp Sci 27:133–147CrossRefMATHGoogle Scholar
  11. European Commission (2009) A sustainable future for transport: towards an integrated, technology-led and user friendly system. COM(2009) 279 finalGoogle Scholar
  12. Gallo G, Longo G, Pallottino S, Nguyen S (1993) Directed hypergraphs and applications. Discret Appl Math 42:177–201MathSciNetCrossRefMATHGoogle Scholar
  13. Gao S (2012) Modeling strategic route choice and real-time information impacts in stochastic and time-dependent networks. Intell Transp Syst, IEEE Trans 13(3):1298–1311CrossRefGoogle Scholar
  14. Gao S, Frejinger E, Ben-Akiva M (2010) Adaptive route choices in risky traffic networks: a prospect theory approach. Transp Res C Emerg Technol 18(5):727–740CrossRefGoogle Scholar
  15. Gendreau M (1984) Étude approfondie d’un modéle d’équilibre pour l’affectation des passangers dans les réseaux de transport en commun. PhD, Université de MontréalGoogle Scholar
  16. Gentile G, Nguyen S, Pallottino S (2005) Route choice on transit networks with online information at stops. Transp Sci 39:289–297CrossRefGoogle Scholar
  17. Grotenhuis J-W, Wiegmans BW, Rietvel P (2007) The desired quality of integrated multimodal travel information in public transport: customer needs for time and effort savings. Transp Policy 14:27–38CrossRefGoogle Scholar
  18. Hamdouch Y, Lawphongpanich S (2008) Schedule-based transit assignment model with travel strategies and capacity constraints. Transp Res B Methodol 42:663–684CrossRefGoogle Scholar
  19. Hamdouch Y, Marcotte P, Nguyen S (2004) A strategic model for dynamic traffic assignment. Netw Spat Econ 4:291–315CrossRefMATHGoogle Scholar
  20. Hamdouch Y, Ho HW, Sumalee A, Wang G (2011) Schedule-based transit assignment model with vehicle capacity and seat availability. Transp Res B Methodol 45:1805–1830CrossRefGoogle Scholar
  21. Hickman MD, Wilson NHM (1995) Passenger travel time and path choice implications of real-time transit information. Transp Res C Emerg Technol 3:211–226CrossRefGoogle Scholar
  22. Kurauchi F, Bell MGH, Schmöcker JD (2003) Capacity constrained transit assignment with common lines. J Math Model Algoritm 2:309–327CrossRefMATHGoogle Scholar
  23. Leurent F, Benezech V (2011) The passenger stock and attractivity threshold model for traffic assignment on a transit network with capacity constraint. Transportation Research Board, 90th Annual Meeting. Washington, D.C.Google Scholar
  24. Miller-Hooks ED, Mahmassani HS (2000) Least expected time paths in stochastic, time-varying transportation networks. Transp Sci 3(2):198–215CrossRefGoogle Scholar
  25. Newman P, Kenworthy JR (1999) Sustainability and cities: overcoming automobile dependence. Island Press. Washington, D.C.Google Scholar
  26. Nguyen S, Pallottino S (1988) Equilibrium traffic assignment for large scale transit networks. Eur J Oper Res 37:176–186MathSciNetCrossRefMATHGoogle Scholar
  27. Nguyen S, Pallottino S, Gendreau M (1998) Implicit enumeration of hyperpaths in a logit model for transit networks. Transp Sci 32:54CrossRefMATHGoogle Scholar
  28. Noekel K, Wekeck S (2007) Choice models in frequency-based transit assignment. European Transport Conference 2007Google Scholar
  29. Pretolani D (2000) A directed hypergraph model for random time dependent shortest paths. Eur J Oper Res 123(2):315–324MathSciNetCrossRefMATHGoogle Scholar
  30. Schmöcker J-D, Bell MGH, Kurauchi F (2008) A quasi-dynamic capacity constrained frequency-based transit assignment model. Transp Res B Methodol 42:925–945CrossRefGoogle Scholar
  31. Spiess H (1983) On optimal route choice strategies in transit networks. In Centre De Recherche Sur Les Transports, UDM (ed)Google Scholar
  32. Spiess H (1984) Contributions á la téorie at aux outils de planification des résaux de transport urbain. Ph.D. Thesis Ph.D. Thesis, Université de MonteréalGoogle Scholar
  33. Spiess H, Florian M (1989) Optimal strategies: a new assignment model for transit networks. Transp Res B Methodol 23:83–102CrossRefGoogle Scholar
  34. Teklu F (2008) A stochastic process approach for frequency-based transit assignment with strict capacity constraints. Netw Spat Econ 8:225–240CrossRefMATHGoogle Scholar
  35. Trozzi V, Gentile G, Bell MGH, Kaparias I (2013) Dynamic user equilibrium in public transport networks with passenger congestion and hyperpaths. Transp Res B Method, in press doi: 10.1016/j.trb.2013.06.011
  36. Ukkusuri SV, Patil G (2007) Exploring user behavior in online network equilibrium problems. Transp Res Rec J Transp Res Board 2029:31–38CrossRefGoogle Scholar
  37. Yang B, Miller-Hooks ED (2004) Adaptive routing considering delays due to signal operations. Transp Res B Methodol 38(5):385–413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Valentina Trozzi
    • 1
  • Guido Gentile
    • 2
  • Ioannis Kaparias
    • 3
  • Michael G. H. Bell
    • 4
  1. 1.Transport Planning – London UndergroundLondonUK
  2. 2.Università di Roma “La Sapienza”RomaItaly
  3. 3.City University LondonLondonUK
  4. 4.St James Campus, The University of SydneySydneyAustralia

Personalised recommendations