Networks and Spatial Economics

, Volume 11, Issue 1, pp 83–99 | Cite as

New Genetic Algorithms Based Approaches to Continuous p-Median Problem

  • M. N. Neema
  • K. M. Maniruzzaman
  • A. Ohgai


We proposed new genetic algorithms (GAs) to address well-known p-median problem in continuous space. Two GA approaches with different replacement procedures are developed to solve this problem. To make the approaches more efficient in finding near-optimal solution two hybrid algorithms are developed combining the new GAs and a traditional local search heuristic. The performance of the newly developed models is compared to that of the traditional alternating location-allocation heuristics by numerical simulation and it is found that the models are effective in finding optimum facility locations.


Genetic algorithms p-Median problem Alternating location-allocation heuristic Hybrid algorithms Continuous space 


  1. Alp O, Erkut E, Drezner D (2003) An efficient genetic algorithm for the p-median problem. Ann Oper Res 122:21–42 doi: 10.1023/A:1026130003508 CrossRefGoogle Scholar
  2. Aytug H, Khouja M, Vergara FE (2003) Use of genetic algorithms to solve production and operations management problems: a review. Int J Prod Res 41(17):3955–4009 doi: 10.1080/00207540310001626319 CrossRefGoogle Scholar
  3. Brimberg J, Salhi S (2005) A continuous location-allocation problem with zone-dependent fixed cost. Ann Oper Res 136:99–115 doi: 10.1007/s10479-005-2041-5 CrossRefGoogle Scholar
  4. Chakraborty P, Deb K, Subramaniyam PS (1995) Optimal scheduling of urban transit systems using genetic algorithms. J Transp Eng 12(6):544–553 doi: 10.1061/(ASCE)0733-947X(1995)121:6(544) CrossRefGoogle Scholar
  5. Chaudhry SS (2006) A genetic algorithm approach to solving the anti-covering location problem. Expert Systems: International Journal of Knowledge Engineering and Neural Networks 23(5):251–257 doi: 10.1111/j.1468-0394.2006.00407.x Google Scholar
  6. Chaudhry SS, Luo W (2005) Application of genetic algorithms in production and operations management: a review. Int J Prod Res 43(19):2005 doi: 10.1080/00207540500143199 CrossRefGoogle Scholar
  7. Chaudhry SS, Varano MW, Xu L (2000) System research, genetic algorithms, and information systems. Syst Res Behav Sci 17:149–162CrossRefGoogle Scholar
  8. Chaudhry SS, He S, Chaudhry PE (2003) Solving a class of facility location problems using genetic algorithm. Expert Systems: International Journal of Knowledge Engineering and Neural Networks 20:86–91 doi: 10.1111/1468-0394.00229 Google Scholar
  9. Chen CL, Lin RH, Zhang J (2003) Genetic algorithms for MD-optimal follow-up designs. Comput Oper Res 30:233–252 doi: 10.1016/S0305-0548(01)00093-4 CrossRefGoogle Scholar
  10. Cooper L (1963) Location-allocation problem. Oper Res 11:331–343CrossRefGoogle Scholar
  11. Drezner Z, Klamroth K, Schöbel A, Wesolowsky G (2001) The Weber problem. In: Drezner Z, Hamacher HW (eds) Facility location: applications and theory. Springer, BerlinGoogle Scholar
  12. Feng CM, Lin JJ (1999) Using a genetic algorithm to generate alternative sketch maps for urban planning. Comput Environ Urban Syst 23:91–108 doi: 10.1016/S0198-9715(99)00004-6 CrossRefGoogle Scholar
  13. Fung RY, Tang J, Wang D (2002) Extension of a hybrid genetic algorithm for nonlinear programming problems with equality and inequality constraints. Comput Oper Res 29:261–274 doi: 10.1016/S0305-0548(00)00068-X CrossRefGoogle Scholar
  14. Goldberg DE (1989) Genetic Algorithms in search, Optimization & Machine Learning. Addison-Wesley, WokinghamGoogle Scholar
  15. Goldengorin B, Ghosh D, Sierksma G (2004) Branch and peg algorithms for the simple plant location problem. Comput Oper Res 31:241–255 doi: 10.1016/S0305-0548(02)00190-9 CrossRefGoogle Scholar
  16. Gong D, Gen M, Xu W, Yamazaki G (1995) Hybrid evolutionary method for obstacle location-allocation. Comput Ind Eng 29(1–4):525–523 doi: 10.1016/0360-8352(95)00128-N CrossRefGoogle Scholar
  17. Gong D, Gen M, Yamazaki G, Xu W (1997) Hybrid evolutionary method for capacitated location-allocation problem. Comput Ind Eng 33(3–4):577–580 doi: 10.1016/S0360-8352(97)00197-6 CrossRefGoogle Scholar
  18. Hakimi SL (1965) Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper Res 13:462–475CrossRefGoogle Scholar
  19. Ho W, Ji P (2003) Component scheduling for chip shooter machines: a hybrid genetic algorithm approach. Comput Oper Res 30:2175–2189 doi: 10.1016/S0305-0548(02)00129-6 CrossRefGoogle Scholar
  20. Holland JH (1975) Adaptations in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MIGoogle Scholar
  21. Houck CR, Joines JA, Kay MG (1996) Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems. Comput Oper Res 23(6):587–596 doi: 10.1016/0305-0548(95)00063-1 CrossRefGoogle Scholar
  22. Jabalameli MS, Ghaderi A (2008) Hybrid algorithms for the uncapacitated continuous location-allocation problem. Int J Adv Manuf Technol 37:202–209 doi: 10.1007/s00170-007-0944-9 CrossRefGoogle Scholar
  23. Jaramillo JH, Bhadury J, Batta R (2002) On the use of genetic algorithms to solve location problems. Comput Oper Res 29(6):761–779CrossRefGoogle Scholar
  24. Kelly JD, Davis L (1991) Hybridizing the genetic algorithm and the K nearest neighbors classification algorithm. In Proceedings of the 4th international conference on genetic algorithms, pp. 370–383Google Scholar
  25. Krzanowski RM, Raper J (1999) Hybrid genetic algorithm for transmitter location in wireless networks. Comput Environ Urban Syst 23:359–382 doi: 10.1016/S0198-9715(99)00030-7 CrossRefGoogle Scholar
  26. Lorena LAN, Senne ELF (2003) A column generation approach to capacitated p-median problems. URL:
  27. Maniruzzaman KM, Okabe A, Asami Y (2001) GIS for cyclone disaster management in Bangladesh. Geogr Environ Model 5(2):123–131 doi: 10.1080/13615930120086087 CrossRefGoogle Scholar
  28. Michalewicz M (1992) Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, BerlinGoogle Scholar
  29. Mladenovic N, Brimberg J, Hansen P, Moreno-Perez JA (2007) The p-median problem: a survey of metaheuristic approaches. Eur J Oper Res 179:927–939 doi: 10.1016/j.ejor.2005.05.034 CrossRefGoogle Scholar
  30. Moreno-Perez JA, Roda Garcia JL, Moreno-Vega JM (1994) A parallel genetic algorithm for the discrete p-median problem. Stud Locat Anal 7:131–141Google Scholar
  31. Okabe A, Boots B, Sugihara K (1992) Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley & Sons Ltd., Chichester, EnglandGoogle Scholar
  32. Plastria F (1995) Continuous Location Problems. In: Drezner Z (ed) Facility location: a survey of applications and methods. Springer-Verlag, New York, pp 225–262Google Scholar
  33. Reese J (2006) Solution methods for the p-median problem: an annotated bibliography. Networks 48(4):125–142CrossRefGoogle Scholar
  34. Rolland E, Gupta R (2004) New linkages between GIS and combinatorial optimization. URL: - 15k
  35. ReVelle C, Swain R (1970) Central Facilities Location. Geogr Anal 2:30–42CrossRefGoogle Scholar
  36. Revees CR (1997) Genetic algorithms for the operations researcher. Informs J Comput 9:231–250CrossRefGoogle Scholar
  37. Salhi S, Gamal MDH (2003) A genetic algorithm based approach for the uncapacitated continuous location-allocation problem. Ann Oper Res 123:203–222 doi: 10.1023/A:1026131531250 CrossRefGoogle Scholar
  38. Senne ELF, Lorena LAN (1999) A lagrangean/surrogate approach to p-median problems. URL:
  39. Xu P (1999) Solving a joint inventory-location problem by a substitution algorithm. Undergraduate senior thesis, Northwestern UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Architecture and Civil Eng. Division, Dept. of Environment and Life Eng.Toyohashi University of TechnologyToyohashiJapan
  2. 2.Department of Urban and Regional PlanningBangladesh University of Engineering and TechnologyDhaka-1000Bangladesh

Personalised recommendations