Networks and Spatial Economics

, Volume 8, Issue 2–3, pp 241–256 | Cite as

Public Transit Corridor Assignment Assuming Congestion Due to Passenger Boarding and Alighting



This paper proposes a formulation of deterministic equilibrium in a public transit corridor that takes into account the congestion effect as perceived directly in travel times. The identification of the relationship between flows and travel times includes time at transit stops for passenger boarding and alighting. A simple case is analyzed that demonstrates the existence of equilibria in which identical users adopt different travel strategies, and a method is supplied for determining such an equilibrium. To find the general case assignment for a corridor, an assignment algorithm based on incremental flow increases is also presented. Finally, the algorithm is implemented in a simple corridor. The results show that identical users faced with the same trip must be allowed to take different decisions for an equilibrium assignment to exist.


Public transit Assignment Congestion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdulaal M, LeBlanc LJ (1979) Methods for combining modal split and equilibrium assignment models. Transp Sci 13:292–314Google Scholar
  2. Chriqui C, Robillard P (1975) Common bus lines. Transp Sci 9:115–121Google Scholar
  3. Cominetti R, Correa J (2001) Common-lines and passenger assignment in congested transit networks. Transp Sci 35(3):250–267CrossRefGoogle Scholar
  4. De Cea J, Fernández E (1993) Transit assignment for congested public transport systems: an equilibrium model. Transp Sci 27(2):133–147CrossRefGoogle Scholar
  5. Dial RB (1967) Transit pathfinder algorithms. Highw Res Rec 205:67–85Google Scholar
  6. Fearnside K, Draper DP (1971) Public transport assigning—a new approach. Traffic Eng Control 298–299Google Scholar
  7. Florian M (1977) A traffic equilibrium model of travel by car and public transit models. Transp Sci 8:166–179Google Scholar
  8. Gendreau M (1984) Ettude approfundie d'un modèle d'equilibre pour l'affectation de passagers dans les réseaux de transports en commun. Pub. 384, Centre de Recherche sur les Transports, Université de MontréalGoogle Scholar
  9. Goodman J, Laube M, Schwenk J (1997) Issues in bus rapid transit. Report for the Federal Transit AdministrationGoogle Scholar
  10. Larrain (2006) Asignación en un Corredor de Transporte Público, Considerando Congestión en los Tiempos de Viaje. Master Thesis. Escuela de Ingeniería. Pontificia Universidad Católica de ChileGoogle Scholar
  11. Le Clercq F (1972) A public transport assigning model. Traffic Eng Control 91–96Google Scholar
  12. Pang JM, Chan D (1982) Iterative methods for variational and complementary problems. Math Program 24:284–313CrossRefGoogle Scholar
  13. Schwarcz S (2004) Service design for heavy demand corridors: limited-stop bus service. MST Thesis, MITGoogle Scholar
  14. Silverman NC, Orosz T, Zicklin A (1998) Limited-stop bus service at New York city transit. J Transp Eng 124(6):503–509CrossRefGoogle Scholar
  15. Spiess H (1984) Contribution à la théorie et aux outils de planification des réseaux de transport urbains. Pub. 382, Centre de Recherche sur les Transports, Université de MontréalGoogle Scholar
  16. Sun A, Hickman M (2005) The real-time stop-skipping problem. Journal of Intelligent Transportation Systems 9(2):91–109CrossRefGoogle Scholar
  17. Turnquist MA (1979) Zone scheduling of urban bus routes. Transp Eng J 105(1):1–13Google Scholar
  18. Vuchic V, Bruun EC, Krstanoski N, Shin YE (1994) The bus transit system: its underutilized potential. University of Pennsylvania Report for the Federal Transit AdministrationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Universidad Diego PortalesSantiagoChile
  2. 2.Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations