Advertisement

Insight into the impact of energy caps on the costs of cellular networks with different layouts and technologies

  • Silvia Boiardi
  • Antonio Capone
  • André Girard
  • Brunilde Sansò
Article
  • 110 Downloads

Abstract

We investigate the options of a network operator who needs to reduce its carbon footprint, expressed in terms of a global energy cap. First, we propose two ways to meet the energy limitations: by efficiently managing the energy consumed by the legacy networks or by installing additional capacity to the initial topology. We show the power savings that can be obtained in both cases as well as the incurred costs. Then we identify the initial composition of the network and the available technology in the upgrade phase as the factors that have the most influence on the ability of a network to meet the energy caps. Finally, we show the intrinsic unfairness of the energy caps, which are imposed to all the networks without taking into account the differences among them. In conclusion, we highlight the fundamental role of carbon markets and emission trading systems to guarantee a measure of fairness between the operators.

Keywords

Energy caps Cellular networks Carbon markets Carbon footprint Energy management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auer, G., Blume, O., Giannini, V., Godor, I., Imran, M.A., Jading, Y., Katranaras, E., Olsson, M., Sabella, D., Skillermark, P., & Wajda, W. (2011a). D2.3 v2: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown. Tech. rep., INFSO-ICT- 247733 EARTH (Energy Aware Radio and network TecHnologies).Google Scholar
  2. 2.
    Auer, G., Giannini, V., Godor, I., Skillermark, P., Olsson, M., Imran, M., Sabella, D., Gonzalez, M., Desset, C., & Blume, O. (2011b). Cellular energy efficiency evaluation framework. In 73Rd vehicular technology conference (VTC), IEEE (pp. 1–6).Google Scholar
  3. 3.
    Boiardi, S., Capone, A., & Sansò, B. (2013). Radio planning of energy-aware cellular networks. Computer Networks, 57, 2564–2577.CrossRefGoogle Scholar
  4. 4.
    Boiardi, S., Capone, A., & Sansò, B. (2014). Planning for energy-aware wireless networks. IEEE Communications Magazine, 52(2), 156–162.CrossRefGoogle Scholar
  5. 5.
    Chiaraviglio, L., Mellia, M., & Neri, F. (2008). Energy-aware networks: Reducing power consumption by switching off network elements. In FEDERICA - Phosphorus tutorial and workshop (TNC2008).Google Scholar
  6. 6.
    Correia, L., Zeller, D., Blume, O., Ferling, D., Jading, Y., Gódor, I., Auer, G., & Van der Perre, L. (2010). Challenges and enabling technologies for energy aware mobile radio networks. IEEE Communications Magazine, 48(11), 66–72.CrossRefGoogle Scholar
  7. 7.
    De Domenico, A., Calvanese Strinati, E., & Capone, A. (2014). Enabling green cellular networks: A survey and outlook. Computer Communications, 37, 5–24. doi: 10.1016/j.comcom.2013.09.011.CrossRefGoogle Scholar
  8. 8.
    Fehske, A., Fettweis, G., Malmodin, J., & Biczok, G. (2011). The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine, 49(8), 55–62.CrossRefGoogle Scholar
  9. 9.
    Hasan, Z., Boostanimehr, H., & Bhargava, V.K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13(4), 524–540.CrossRefGoogle Scholar
  10. 10.
    Hata, M. (1980). Empirical formula for propagation loss in land mobile radio services. IEEE Transactions on Vehicular Technology, 29(3), 317–325.CrossRefGoogle Scholar
  11. 11.
    ITU International Telecommunication Union (2007). ICTs and climate change. http://www.itu.int/ITU-T/newslog/ICTs+And+Climate+Change.aspx , ITU-T Technology Watch Report 3, December 2007.
  12. 12.
    Marsan, M.A., & Meo, M. (2010). Energy efficient management of two cellular access networks. ACM SIGMETRICS Performance Evaluation Review, 37(4), 69–73.CrossRefGoogle Scholar
  13. 13.
    Niu, Z., Wu, Y., Gong, J., & Yang, Z. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48(11), 74–79.CrossRefGoogle Scholar
  14. 14.
    NOAA National Climatic Data Center (2014). State of the climate: Global analysis for annual 2014. http://www.ncdc.noaa.gov/sotc/global/2014/13, published online January 2015.
  15. 15.
    NRC National Research Council. (2010). Advancing the science of climate change. Washington: The National Academies Press.Google Scholar
  16. 16.
    Schneider, S. (1998). Kyoto protocol: the unfinished agenda. Climatic Change, 39(1), 1–21.CrossRefGoogle Scholar
  17. 17.
    The Climate Group (2008). SMART 2020: Enabling the low carbon economy in the information age. Tech. rep., Global e-Sustainability Initiative.Google Scholar
  18. 18.
    Wang, X., Vasilakos, A., Chen, M., Liu, Y., & Kwon, T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications (MONET), 17(1), 4–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Silvia Boiardi
    • 1
  • Antonio Capone
    • 2
  • André Girard
    • 1
  • Brunilde Sansò
    • 1
  1. 1.Département de Génie ÉlectriqueÉcole Polytechnique de MontréalMontrealCanada
  2. 2.Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanoItaly

Personalised recommendations