Cerebellar-Subcortical-Cortical Systems as Modulators of Cognitive Functions

Abstract

Over the past few decades, research has established that the cerebellum is involved in executive functions; however, its specific role remains unclear. There are numerous theories of cerebellar function and numerous cognitive processes falling under the umbrella of executive function, making investigations of the cerebellum’s role in executive functioning challenging. In this review, we explored the role of the cerebellum in executive functioning through clinical and cognitive neuroscience frameworks. We reviewed the neuroanatomical systems and theoretical models of cerebellar functions and the multifaceted nature of executive functions. Using attention deficit hyperactivity disorder and cerebellar tumor as clinical developmental models of cerebellar dysfunction, and the functional magnetic resonance imaging literature, we reviewed evidence for cerebellar involvement in specific components of executive function in childhood, adolescence, and adulthood. There is evidence for posterior cerebellar contributions to working memory, planning, inhibition, and flexibility, but the heterogeneous literature that largely was not designed to study the cerebellum makes it difficult to determine specific functions of the cerebellum or cerebellar regions. In addition, while it is clear that cerebellar insult in childhood affects executive function performance later in life, more work is needed to elucidate the mechanisms by which executive dysfunction occurs and its developmental course. The limitations of the current literature are discussed and potential directions for future research are provided.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ahmadian, N., van Baarsen, K., van Zandvoort, M., & Robe, P. A. (2019). The Cerebellar Cognitive Affective Syndrome-a Meta-analysis. Cerebellum, 18(5), 941–950. https://doi.org/10.1007/s12311-019-01060-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ailion, A. S., Hortman, K., & King, T. Z. (2017). Childhood Brain Tumors: A Systematic Review of the Structural Neuroimaging Literature. Neuropsychology Review. https://doi.org/10.1007/s11065-017-9352-6

    Article  PubMed  Google Scholar 

  3. Ailion, A. S., King, T. Z., Roberts, S. R., Tang, B., Turner, J. A., Conway, C. M., & Crosson, B. (2020). Double Dissociation of Auditory Attention Span and Visual Attention in Long-Term Survivors of Childhood Cerebellar Tumor: A Deterministic Tractography Study of the Cerebellar-Frontal and the Superior Longitudinal Fasciculus Pathways. Journal of the International Neuropsychological Society, 26, 939–953. https://doi.org/10.1017/S1355617720000417.

    Article  PubMed  Google Scholar 

  4. Ailion, A. S., King, T. Z., Wang, L., Fox, M. E., Mao, H., Morris, R. M., et al. (2016). Cerebellar Atrophy in Adult Survivors of Childhood Cerebellar Tumor. J Int Neuropsychol Soc, 22(5), 501–511. https://doi.org/10.1017/S1355617716000138

    Article  PubMed  Google Scholar 

  5. Ailion, A. S., Roberts, S. R., Crosson, B., & King, T. Z. (2019). Neuroimaging of the component white matter connections and structures within the cerebellar-frontal pathway in posterior fossa tumor survivors. Neuroimage Clin, 23, 101894. https://doi.org/10.1016/j.nicl.2019.101894

    Article  PubMed  PubMed Central  Google Scholar 

  6. Akshoomoff, N. A., Brown, T. T., Bakeman, R., & Hagler, D. J. (2018). Developmental differentiation of executive functions on the NIH Toolbox Cognition Battery. Neuropsychology, 32(7), 777–783. https://doi.org/10.1037/neu0000476

    Article  PubMed  PubMed Central  Google Scholar 

  7. Akshoomoff, N. A., Courchesne, E., & Townsend, J. (1997). Attention coordination and anticipatory control. International Review of Neurobiology, 41, 575–598.

    CAS  Article  Google Scholar 

  8. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381. https://doi.org/10.1146/annurev.ne.09.030186.002041

    CAS  Article  PubMed  Google Scholar 

  9. Alias, H., Lau, S. C. D., Schuitema, I., & de Sonneville, L. M. J. (2018). Neuropsychological Consequences for Survivors of Childhood Brain Tumor in Malaysia. Front Psychol, 9, 703. https://doi.org/10.3389/fpsyg.2018.00703

    Article  PubMed  PubMed Central  Google Scholar 

  10. Allin, M., Matsumoto, H., Santhouse, A. M., Nosarti, C., AlAsady, M. H. S., Stewart, A. L., et al. (2001). Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 124(1), 60–66. https://doi.org/10.1093/brain/124.1.60

    CAS  Article  PubMed  Google Scholar 

  11. Andersen, L. M., Jerbi, K., & Dalal, S. S. (2020). Can EEG and MEG detect signals from the human cerebellum? Neuroimage, 215, 116817. https://doi.org/10.1016/j.neuroimage.2020.116817

    Article  PubMed  PubMed Central  Google Scholar 

  12. Armbruster-Genc, D. J., Ueltzhoffer, K., & Fiebach, C. J. (2016). Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability. Journal of Neuroscience, 36(14), 3978–3987. https://doi.org/10.1523/JNEUROSCI.2517-14.2016

    CAS  Article  PubMed  Google Scholar 

  13. Arnsten, A. F. (2009). The Emerging Neurobiology of Attention Deficit Hyperactivity Disorder: The Key Role of the Prefrontal Association Cortex. J Pediatr, 154(5), I-S43. https://doi.org/10.1016/j.jpeds.2009.01.018

  14. Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55-68. https://doi.org/10.1016/j.biopsych.2010.07.024

    Article  PubMed  Google Scholar 

  15. Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.

    CAS  Article  Google Scholar 

  16. Balsters, J. H., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling. Human Brain Mapping, 35(7), 3152–3169. https://doi.org/10.1002/hbm.22392

    Article  PubMed  Google Scholar 

  17. Baum, G. L., Ciric, R., Roalf, D. R., Betzel, R. F., Moore, T. M., Shinohara, R. T., et al. (2017). Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth. Curr Biol, 27(11), 1561–1572. https://doi.org/10.1016/j.cub.2017.04.051

  18. Becker, E. B., & Stoodley, C. J. (2013). Autism spectrum disorder and the cerebellum. International Review of Neurobiology, 113, 1–34. https://doi.org/10.1016/b978-0-12-418700-9.00001-0

    CAS  Article  PubMed  Google Scholar 

  19. Benavides-Varela, S., Lorusso, R., Baro, V., Denaro, L., Estevez-Perez, N., Lucangeli, D., et al. (2019). Mathematical skills in children with pilocytic astrocytoma. Acta Neurochir (Wien), 161(1), 161–169. https://doi.org/10.1007/s00701-018-3744-0

    Article  Google Scholar 

  20. Berger, A., Sadeh, M., Tzur, G., Shuper, A., Kornreich, L., Inbar, D., & Merian, N. (2005). Task switching after cerebellar damage. Neuropsychology, 19(3), 362–370. https://doi.org/10.1037/0894-4105.19.3.362

    Article  PubMed  Google Scholar 

  21. Berquin, P., Giedd, J., Jacobsen, L., Hamburger, S., Krain, A., Rapoport, J., et al. (1998). Cerebellum in attention-deficit hyperactivity disorder: A morphometric MRI study., 50(4), 1087–1093.

    CAS  Google Scholar 

  22. Bostan, A. C., Dum, R. P., & Strick, P. L. (2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci, 17(5), 241–254. https://doi.org/10.1016/j.tics.2013.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bostan, A. C., & Strick, P. L. (2010). The cerebellum and basal ganglia are interconnected. Neuropsychology Review, 20(3), 261–270. https://doi.org/10.1007/s11065-010-9143-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Braet, W., Johnson, K. A., Tobin, C. T., Acheson, R., Bellgrove, M. A., Robertson, I. H., et al. (2009). Functional developmental changes underlying response inhibition and error-detection processes. Neuropsychologia, 47(14), 3143–3151. https://doi.org/10.1016/j.neuropsychologia.2009.07.018

    Article  PubMed  Google Scholar 

  25. Brewster, R. C., King, T. Z., Burns, T. G., Drossner, D. M., & Mahle, W. T. (2015). White Matter Integrity Dissociates Verbal Memory and Auditory Attention Span in Emerging Adults with Congenital Heart Disease. J Int Neuropsychol Soc, 21(1), 22–33. https://doi.org/10.1017/S135561771400109X

    Article  PubMed  Google Scholar 

  26. Brinkman, T. M., Reddick, W. E., Luxton, J., Glass, J. O., Sabin, N. D., Srivastava, D. K., . . . Krull, K. R., et al. (2012). Cerebral white matter integrity and executive function in adult survivors of childhood medulloblastoma. Neuro Oncol, 14 Suppl 4, iv25–36. https://doi.org/10.1093/neuonc/nos214

  27. Brown, T. T., Lugar, H. M., Coalson, R. S., Miezin, F. M., Petersen, S. E., Schlaggar, B. L., et al. (2005). Cerebral cortex (New York, N.Y. : 1991), 15(3), 275–290. https://doi.org/10.1093/cercor/bhh129

  28. Buchsbaum, B. R., Greer, S., Chang, W. L., & Berman, K. F. (2005). Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Human Brain Mapping, 25(1), 35–45. https://doi.org/10.1002/hbm.20128

    Article  PubMed  PubMed Central  Google Scholar 

  29. Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80(3), 807–815. https://doi.org/10.1016/j.neuron.2013.10.044

    CAS  Article  PubMed  Google Scholar 

  30. Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., & Yeo, B. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(5), 2322–2345. https://doi.org/10.1152/jn.00339.2011

    Article  PubMed  PubMed Central  Google Scholar 

  31. Butts, T., Green, M. J., & Wingate, R. J. (2014). Development of the cerebellum: Simple steps to make a “little brain.” Development, 141(21), 4031–4041. https://doi.org/10.1242/dev.106559

    CAS  Article  PubMed  Google Scholar 

  32. Caligiore, D., Pezzulo, G., Baldassarre, G., Bostan, A. C., Strick, P. L., Doya, K., et al. (2017). Consensus Paper: Towards a Systems-Level View of Cerebellar Function: The Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum, 16(1), 203–229. https://doi.org/10.1007/s12311-016-0763-3

    Article  PubMed  Google Scholar 

  33. Chelune, G. J., & Duff, K. (2019). The Assessment of Change: Serial Assessments in Dementia Evaluations. In L. D. Ravdin & H. L. Katzen (Eds.), Handbook on the Neuropsychology of Aging and Dementia (pp. 61–76). Cham: Springer International Publishing.

    Google Scholar 

  34. Chen, H., Wang, L., King, T. Z., & Mao, H. (2016). Increased frontal functional networks in adult survivors of childhood brain tumors. Neuroimage Clin, 11, 339–346. https://doi.org/10.1016/j.nicl.2016.02.010

    Article  PubMed  PubMed Central  Google Scholar 

  35. Clark, S. V., King, T. Z., & Turner, J. (2020). Cerebellar contributions to proactive and reactive control in the stop signal task: A systematic review and meta-analysis of functional magnetic resonance imaging studies. Neuropsychol Rev, 30, 362–385.

    Article  Google Scholar 

  36. Clark, S.V. (2020). Relationships between cerebello-cortical functional connectivity and executive functioning across childhood and adolescence [Unpublished doctoral dissertation]. Georgia State University.

  37. Dennis, M., & Barnes, M. A. (2010). The cognitive phenotype of spina bifida meningomyelocele. Dev Disabil Res Rev, 16(1), 31–39. https://doi.org/10.1002/ddrr.89

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., Fletcher, J. M., et al. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuropsychol Soc, 15(3), 331–343. https://doi.org/10.1017/S1355617709090481

    Article  PubMed  PubMed Central  Google Scholar 

  39. Depue, B. E., Burgess, G. C., Willcutt, E. G., Bidwell, L. C., Ruzic, L., Banich, M. T., et al. (2010). Symptom-correlated brain regions in young adults with combined-type ADHD: their organization, variability, and relation to behavioral performance. Psychiatry Research, 182(2), 96–102. https://doi.org/10.1016/j.pscychresns.2009.11.011

    Article  PubMed  PubMed Central  Google Scholar 

  40. Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750

    Article  PubMed  Google Scholar 

  41. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. (2009). A probabilistic MR atlas of the human cerebellum. Neuroimage, 46(1), 39–46. https://doi.org/10.1016/j.neuroimage.2009.01.045

    Article  PubMed  Google Scholar 

  42. Doger de Speville, E., Robert, C., Perez-Guevara, M., Grigis, A., Bolle, S., Pinaud, C., et al. (2017). Relationships between Regional Radiation Doses and Cognitive Decline in Children Treated with Cranio-Spinal Irradiation for Posterior Fossa Tumors. Front Oncol, 7, 166. https://doi.org/10.3389/fonc.2017.00166

    Article  PubMed  PubMed Central  Google Scholar 

  43. Doyon, J., Laforce, R., Jr., Bouchard, G., Gaudreau, D., Roy, J., Poirier, M., et al. (1998). Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia, 36(7), 625–641. https://doi.org/10.1016/s0028-3932(97)00168-1

    CAS  Article  PubMed  Google Scholar 

  44. E, K. H., Chen, S. H., Ho, M. H., & Desmond, J. E. . (2014). A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Human Brain Mapping, 35(2), 593–615. https://doi.org/10.1002/hbm.22194

    Article  Google Scholar 

  45. Emch, M., von Bastian, C. C., & Koch, K. (2019). Neural Correlates of Verbal Working Memory: An fMRI Meta-Analysis. Front Hum Neurosci, 13, 180. https://doi.org/10.3389/fnhum.2019.00180

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ettenhofer, M. L., Hambrick, D. Z., & Abeles, N. (2006). Reliability and stability of executive functioning in older adults. Neuropsychology, 20(5), 607–613. https://doi.org/10.1037/0894-4105.20.5.607

    Article  PubMed  Google Scholar 

  47. Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). Impaired non-motor learning and error detection associated with cerebellar damage. A single case study. Brain, 115(Pt 1), 155–178. https://doi.org/10.1093/brain/115.1.155

    Article  PubMed  Google Scholar 

  48. Fischer, M., Barkley, R. A., Fletcher, K. E., & Smallish, L. (1993). The Adolescent Outcome of Hyperactive Children: Predictors of Psychiatric, Academic, Social, and Emotional Adjustment. Journal of the American Academy of Child & Adolescent Psychiatry, 32(2), 324–332. https://doi.org/10.1097/00004583-199303000-00013

    CAS  Article  Google Scholar 

  49. Fox, M. E., & King, T. Z. (2018). Functional Connectivity in Adult Brain Tumor Patients: A Systematic Review. Brain Connect, 8(7), 381–397. https://doi.org/10.1089/brain.2018.0623

    Article  PubMed  Google Scholar 

  50. Fuemmeler, B. F., Elkin, T. D., & Mullins, L. L. (2002). Survivors of childhood brain tumors: Behavioral, emotional, and social adjustment. Clin Psychol Rev, 22(4), 547–585. https://doi.org/10.1016/s0272-7358(01)00120-9

    Article  PubMed  Google Scholar 

  51. Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2010). Blood oxygen level-dependent signal variability is more than just noise. Journal of Neuroscience, 30(14), 4914–4921. https://doi.org/10.1523/JNEUROSCI.5166-09.2010

    CAS  Article  PubMed  Google Scholar 

  52. Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2011). The importance of being variable. Journal of Neuroscience, 31(12), 4496–4503. https://doi.org/10.1523/JNEUROSCI.5641-10.2011

    CAS  Article  PubMed  Google Scholar 

  53. Glass, J. O., Ogg, R. J., Hyun, J. W., Harreld, J. H., Schreiber, J. E., Palmer, S. L., et al. (2017). Disrupted development and integrity of frontal white matter in patients treated for pediatric medulloblastoma. Neuro Oncol, 19(10), 1408–1418. https://doi.org/10.1093/neuonc/nox062

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gudrunardottir, T., Sehested, A., Juhler, M., Grill, J., & Schmiegelow, K. (2011). Cerebellar mutism: Definitions, classification and grading of symptoms. Childs Nervous System, 27(9), 1361–1363. https://doi.org/10.1007/s00381-011-1509-7

    Article  Google Scholar 

  55. Guell, X., Gabrieli, J. D. E., & Schmahmann, J. D. (2018). Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage, 172, 437–449. https://doi.org/10.1016/j.neuroimage.2018.01.082

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hirose, S., Jimura, K., Kunimatsu, A., Abe, O., Ohtomo, K., Miyashita, Y., et al. (2014). Changes in cerebro-cerebellar interaction during response inhibition after performance improvement. NeuroImage, 99, 142–148. https://doi.org/10.1016/j.neuroimage.2014.05.007

    Article  PubMed  Google Scholar 

  57. Hoang, D. H., Pagnier, A., Cousin, E., Guichardet, K., Schiff, I., Icher, C., et al. (2019). Anatomo-functional study of the cerebellum in working memory in children treated for medulloblastoma. Journal of Neuroradiology. Journal de Neuroradiologie, 46(3), 207–213. https://doi.org/10.1016/j.neurad.2019.01.093

    Article  PubMed  Google Scholar 

  58. Hoang, D. H., Pagnier, A., Guichardet, K., Dubois-Teklali, F., Schiff, I., Lyard, G., et al. (2014). Cognitive disorders in pediatric medulloblastoma: What neuroimaging has to offer. J Neurosurg Pediatr, 14(2), 136–144. https://doi.org/10.3171/2014.5.PEDS13571

    Article  PubMed  Google Scholar 

  59. Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9(4), 304–313. https://doi.org/10.1038/nrn2332

    CAS  Article  PubMed  Google Scholar 

  60. Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. J Cogn Neurosci, 1(2), 136–152. https://doi.org/10.1162/jocn.1989.1.2.136

    CAS  Article  PubMed  Google Scholar 

  61. Jimura, K., Cazalis, F., Stover, E. R., & Poldrack, R. A. (2014). The neural basis of task switching changes with skill acquisition. Front Hum Neurosci, 8, 339. https://doi.org/10.3389/fnhum.2014.00339

    Article  PubMed  PubMed Central  Google Scholar 

  62. Juranek, J., Dennis, M., Cirino, P. T., El-Messidi, L., & Fletcher, J. M. (2010). The cerebellum in children with spina bifida and Chiari II malformation: Quantitative volumetrics by region. Cerebellum, 9(2), 240–248. https://doi.org/10.1007/s12311-010-0157-x

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kail, R., & Salthouse, T. A. (1994). Processing Speed as a Mental Capacity. Acta Psychologica, 86(2 3), 199–225. https://doi.org/10.1016/0001-6918(94)90003-5

    CAS  Article  PubMed  Google Scholar 

  64. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neuroscie, 23(23), 8432–8444. https://www.ncbi.nlm.nih.gov/pubmed/12968006

  65. Kieling, C., Kieling, R. R., Rohde, L. A., Frick, P. J., Moffitt, T., Nigg, J. T., et al. (2010). The Age at Onset of Attention Deficit Hyperactivity Disorder. American Journal of Psychiatry, 167(1), 14–16. https://doi.org/10.1176/appi.ajp.2009.09060796

    Article  Google Scholar 

  66. King, T. Z., Ailion, A. S., Fox, M. E., & Hufstetler, S. M. (2019). Neurodevelopmental model of long-term outcomes of adult survivors of childhood brain tumors., 25(1), 1–21.

    Google Scholar 

  67. King, T. Z., Na, S., & Mao, H. (2015). Neural Underpinnings of Working Memory in Adult Survivors of Childhood Brain Tumors. J Int Neuropsychol Soc, 21(7), 494–505. https://doi.org/10.1017/S135561771500051X

    Article  PubMed  Google Scholar 

  68. King, T. Z., Smith, K. M., & Ivanisevic, M. (2015). The Mediating Role of Visuospatial Planning Skills on Adaptive Function Among Young-Adult Survivors of Childhood Brain Tumor. Arch Clin Neuropsychol, 30(5), 394–403. https://doi.org/10.1093/arclin/acv033

    Article  PubMed  Google Scholar 

  69. Kipping, J. A., Margulies, D. S., Eickhoff, S. B., Lee, A., & Qiu, A. (2018). Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children. NeuroImage, 176, 510–517. https://doi.org/10.1016/j.neuroimage.2018.04.067

    Article  PubMed  Google Scholar 

  70. Kipping, J. A., Xie, Y., & Qiu, A. (2018). Cerebellar development and its mediation role in cognitive planning in childhood. Human Brain Mapping, 39(12), 5074–5084. https://doi.org/10.1002/hbm.24346

    Article  PubMed  PubMed Central  Google Scholar 

  71. Koustenis, E., Hernaiz Driever, P., de Sonneville, L., & Rueckriegel, S. M. (2016). Executive function deficits in pediatric cerebellar tumor survivors. Eur J Paediatr Neurol, 20(1), 25–37. https://doi.org/10.1016/j.ejpn.2015.11.001

    Article  PubMed  Google Scholar 

  72. Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., et al. (2014). Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum, 13(1), 151–177. https://doi.org/10.1007/s12311-013-0511-x

    Article  PubMed  PubMed Central  Google Scholar 

  73. Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition: Implications for neuropsychological assessment: Springer Science & Business Media.

  74. Koziol, L. F., Budding, D. E., & Chidekel, D. (2010). Adaptation, expertise, and giftedness: Towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum, 9(4), 499–529. https://doi.org/10.1007/s12311-010-0192-7

    Article  PubMed  Google Scholar 

  75. Krivitzky, L. S., Walsh, K. S., Fisher, E. L., & Berl, M. M. (2016). Executive functioning profiles from the BRIEF across pediatric medical disorders: Age and diagnosis factors. Child Neuropsychology, 22(7), 870–888. https://doi.org/10.1080/09297049.2015.1054272

    Article  PubMed  Google Scholar 

  76. Law, N., Bouffet, E., Laughlin, S., Laperriere, N., Briere, M. E., Strother, D., et al. (2011). Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: Impact on working memory. NeuroImage, 56(4), 2238–2248. https://doi.org/10.1016/j.neuroimage.2011.03.065

    Article  PubMed  Google Scholar 

  77. Law, N., Smith, M. L., Greenberg, M., Bouffet, E., Taylor, M. D., Laughlin, S., et al. (2017). Executive function in paediatric medulloblastoma: The role of cerebrocerebellar connections. J Neuropsychol, 11(2), 174–200. https://doi.org/10.1111/jnp.12082

    Article  PubMed  Google Scholar 

  78. Leavitt, V. M., Wylie, G., Krch, D., Chiaravalloti, N., DeLuca, J., Sumowski, J. F., et al. (2014). Does slowed processing speed account for executive deficits in multiple sclerosis? Evidence from neuropsychological performance and structural neuroimaging. Rehabil Psychol, 59(4), 422–428. https://doi.org/10.1037/a0037517

    Article  PubMed  Google Scholar 

  79. Lee, K., Bull, R., & Ho, R. M. (2013). Developmental changes in executive functioning. Child Development, 84(6), 1933–1953. https://doi.org/10.1111/cdev.12096

    Article  PubMed  Google Scholar 

  80. Lemay, S., Bedard, M. A., Rouleau, I., & Tremblay, P. L. (2004). Practice effect and test-retest reliability of attentional and executive tests in middle-aged to elderly subjects. Clin Neuropsychol, 18(2), 284–302. https://doi.org/10.1080/13854040490501718

    Article  PubMed  Google Scholar 

  81. Levisohn, L., Cronin-Golomb, A., & Schmahmann, J. D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain, 123, 1041–1050.

    Article  Google Scholar 

  82. Lie, C. H., Specht, K., Marshall, J. C., & Fink, G. R. (2006). Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. NeuroImage, 30(3), 1038–1049. https://doi.org/10.1016/j.neuroimage.2005.10.031

    Article  PubMed  Google Scholar 

  83. Limperopoulos, C., Bassan, H., Gauvreau, K., Robertson, R. L., Jr., Sullivan, N. R., Benson, C. B., & duPlessis, A. J. (2007). Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 120(3), 584–593. https://doi.org/10.1542/peds.2007-1041

    Article  PubMed  Google Scholar 

  84. Luna, B., & Sweeney, J. A. (2001). Studies of brain and cognitive maturation through childhood and adolescence A strategy for testing neurodevelopmental hypotheses. Schizophrenia Bulletin, 27(3), 443–455. https://doi.org/10.1093/oxfordjournals.schbul.a006886

    CAS  Article  PubMed  Google Scholar 

  85. Ma, J., Lei, D., Jin, X., Du, X., Jiang, F., Li, F., et al. (2012). Compensatory brain activation in children with attention deficit/hyperactivity disorder during a simplified Go/No-go task. J Neural Transm (Vienna), 119(5), 613–619. https://doi.org/10.1007/s00702-011-0744-0

    Article  Google Scholar 

  86. Mahone, E. M., & Denckla, M. B. (2017). Attention-Deficit/Hyperactivity Disorder: A Historical Neuropsychological Perspective. J Int Neuropsychol Soc, 23(9–10), 916–929. https://doi.org/10.1017/S1355617717000807

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mahone, E. M., Zabel, T. A., Levey, E., Verda, M., & Kinsman, S. (2002). Parent and self-report ratings of executive function in adolescents with myelomeningocele and hydrocephalus. Child Neuropsychology, 8(4), 258–270. https://doi.org/10.1076/chin.8.4.258.13510

    Article  PubMed  Google Scholar 

  88. Martin, S., & Kitzman, P. (2017). Evidence of Cerebellar Dysfunction in Children with Myelomeningocele. Physical Medicine and Rehabilitation - International, 4(1).

  89. Marvel, C. L., & Desmond, J. E. (2010a). Functional topography of the cerebellum in verbal working memory. Neuropsychology Review, 20(3), 271–279. https://doi.org/10.1007/s11065-010-9137-7

    Article  PubMed  PubMed Central  Google Scholar 

  90. Marvel, C. L., & Desmond, J. E. (2010b). The contributions of cerebro-cerebellar circuitry to executive verbal working memory. Cortex, 46(7), 880–895. https://doi.org/10.1016/j.cortex.2009.08.017

    Article  PubMed  Google Scholar 

  91. Massat, I., Slama, H., Kavec, M., Linotte, S., Mary, A., Baleriaux, D., et al. (2012). Working memory-related functional brain patterns in never medicated children with ADHD. PLoS ONE, 7(11), e49392. https://doi.org/10.1371/journal.pone.0049392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. McAlonan, G. M., Cheung, V., Chua, S. E., Oosterlaan, J., Hung, S. F., Tang, C. P., et al. (2009). Age-related grey matter volume correlates of response inhibition and shifting in attention-deficit hyperactivity disorder. British Journal of Psychiatry, 194(2), 123–129. https://doi.org/10.1192/bjp.bp.108.051359

    Article  Google Scholar 

  93. Medaglia, J. D., Chiou, K. S., Slocomb, J., Fitzpatrick, N. M., Wardecker, B. M., Ramanathan, D., et al. (2012). The less BOLD, the wiser: Support for the latent resource hypothesis after traumatic brain injury. Human Brain Mapping, 33(4), 979–993. https://doi.org/10.1002/hbm.21264

    Article  PubMed  Google Scholar 

  94. Meiran, N., Gotler, A., & Perlman, A. (2001). Old age is associated with a pattern of relatively intact and relatively impaired task-set switching abilities. Journal of Gerontology, 56B(2), 88–102.

    Article  Google Scholar 

  95. Mencarelli, L., Neri, F., Momi, D., Menardi, A., Rossi, S., Rossi, A., et al. (2019). Stimuli, presentation modality, and load-specific brain activity patterns during n-back task. Human Brain Mapping, 40(13), 3810–3831. https://doi.org/10.1002/hbm.24633

    Article  PubMed  PubMed Central  Google Scholar 

  96. Miall, R. C. (2013). Cerebellum: Anatomy and Function. In D. W. Pfaff (Ed.), Neuroscience in the 21st Century: From Basic to Clinical (pp. 1149–1167). New York, NY: Springer, New York.

    Google Scholar 

  97. Middleton, F., & Strick, P. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461. https://doi.org/10.1126/science.7939688

    CAS  Article  PubMed  Google Scholar 

  98. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2–3), 236–250. https://doi.org/10.1016/s0165-0173(99)00040-5

    CAS  Article  PubMed  Google Scholar 

  99. Miquel, M., Nicola, S. M., Gil-Miravet, I., Guarque-Chabrera, J., & Sanchez-Hernandez, A. (2019). A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front Behav Neurosci, 13, 99. https://doi.org/10.3389/fnbeh.2019.00099

    Article  PubMed  PubMed Central  Google Scholar 

  100. Miyake, A., & Friedman, N. P. (2012). The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions. Curr Dir Psychol Sci, 21(1), 8–14. https://doi.org/10.1177/0963721411429458

    Article  PubMed  PubMed Central  Google Scholar 

  101. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., Wager, T. D., et al. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734

    CAS  Article  PubMed  Google Scholar 

  102. Moberget, T., Andersson, S., Lundar, T., Due-Tonnessen, B. J., Heldal, A., Endestad, T., et al. (2015). Long-term supratentorial brain structure and cognitive function following cerebellar tumour resections in childhood. Neuropsychologia, 69, 218–231. https://doi.org/10.1016/j.neuropsychologia.2015.02.007

    CAS  Article  PubMed  Google Scholar 

  103. Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., et al. (1997). Cerebellum and procedural learning: Evidence from focal cerebellar lesions. Brain, 120(Pt 10), 1753–1762. https://doi.org/10.1093/brain/120.10.1753

    Article  PubMed  Google Scholar 

  104. Morris, E. B., Phillips, N. S., Laningham, F. H., Patay, Z., Gajjar, A., Wallace, D., et al. (2009). Proximal dentatothalamocortical tract involvement in posterior fossa syndrome. Brain, 132(11), 3087–3095. https://doi.org/10.1093/brain/awp241.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mostofsky, S. H., Reiss, A. L., Lockhart, P., & Denckla M.B (1998). Evaluation of cerebellar size in attention-deficit hyperactivity disorder. 13(9), 434–439.

  106. Muller, U., Kerns, K. A., & Konkin, K. (2012). Test-retest reliability and practice effects of executive function tasks in preschool children. Clin Neuropsychol, 26(2), 271–287. https://doi.org/10.1080/13854046.2011.645558

    Article  PubMed  Google Scholar 

  107. Na, S., Li, L., Crosson, B., Dotson, V., MacDonald, T. J., Mao, H., et al. (2018). White matter network topology relates to cognitive flexibility and cumulative neurological risk in adult survivors of pediatric brain tumors. Neuroimage Clin, 20, 485–497. https://doi.org/10.1016/j.nicl.2018.08.015

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ng, H. B., Kao, K. L., Chan, Y. C., Chew, E., Chuang, K. H., Chen, S. H., et al. (2016). Modality specificity in the cerebro-cerebellar neurocircuitry during working memory. Behavioural Brain Research, 305, 164–173. https://doi.org/10.1016/j.bbr.2016.02.027

    Article  PubMed  Google Scholar 

  109. Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., Carter, C. S., et al. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci, 12(2), 241–268. https://doi.org/10.3758/s13415-011-0083-5

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nikolas, M. A., & Nigg, J. T. (2013). Neuropsychological performance and attention-deficit hyperactivity disorder subtypes and symptom dimensions. Neuropsychology, 27(1), 107–120. https://doi.org/10.1037/a0030685

    Article  PubMed  Google Scholar 

  111. Nitschke, K., Kostering, L., Finkel, L., Weiller, C., & Kaller, C. P. (2017). A Meta-analysis on the neural basis of planning: Activation likelihood estimation of functional brain imaging results in the Tower of London task. Human Brain Mapping, 38(1), 396–413. https://doi.org/10.1002/hbm.23368

    Article  PubMed  Google Scholar 

  112. Ostrom, Q. T., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. S., et al (2019). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro Oncol, 21(Supplement_5), v1-v100. https://doi.org/10.1093/neuonc/noz150

  113. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. https://doi.org/10.1002/hbm.20131

    Article  PubMed  PubMed Central  Google Scholar 

  114. Paap, K. R., & Sawi, O. (2016). The role of test-retest reliability in measuring individual and group differences in executive functioning. Journal of Neuroscience Methods, 274, 81–93. https://doi.org/10.1016/j.jneumeth.2016.10.002

    Article  PubMed  Google Scholar 

  115. Pan E, Prados MD. Low grade Gliomas. In: Kufe DW, Pollock RE, Weichselbaum RR, et al., editors. Holland-Frei Cancer Medicine. 6th edition. Hamilton (ON): BC Decker; 2003. Available from: https://www.ncbi.nlm.nih.gov/books/NBK13697/

  116. Palmer, S. L., Armstrong, C., Onar-Thomas, A., Wu, S., Wallace, D., Bonner, M. J., et al. (2013). Processing speed, attention, and working memory after treatment for medulloblastoma: An international, prospective, and longitudinal study. Journal of Clinical Oncology, 31(28), 3494–3500. https://doi.org/10.1200/JCO.2012.47.4775

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pearlson, G. D., Liu, J., & Calhoun, V. D. (2015). An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders. Front Genet, 6, 276. https://doi.org/10.3389/fgene.2015.00276

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Pelzer, E. A., Melzer, C., Timmermann, L., von Cramon, D. Y., & Tittgemeyer, M. (2017). Basal ganglia and cerebellar interconnectivity within the human thalamus. Brain Struct Funct, 222(1), 381–392. https://doi.org/10.1007/s00429-016-1223-z

    Article  PubMed  Google Scholar 

  119. Peterburs, J., Blevins, L. C., Sheu, Y. S., & Desmond, J. E. (2019). Cerebellar contributions to sequence prediction in verbal working memory. Brain Struct Funct, 224(1), 485–499. https://doi.org/10.1007/s00429-018-1784-0

    Article  PubMed  Google Scholar 

  120. Peterson, R. K., Tabori, U., Bouffet, E., Laughlin, S., Liu, F., Scantlebury, N., et al. (2019). Predictors of neuropsychological late effects and white matter correlates in children treated for a brain tumor without radiation therapy. Pediatric Blood & Cancer, 66(10), e27924. https://doi.org/10.1002/pbc.27924

    Article  Google Scholar 

  121. Pizzo, F., Roehri, N., Medina Villalon, S., Trebuchon, A., Chen, S., Lagarde, S., et al. (2019). Deep brain activities can be detected with magnetoencephalography. Nat Commun, 10(1), 971. https://doi.org/10.1038/s41467-019-08665-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Popa, L. S., & Ebner, T. J. (2018). Cerebellum. Predictions and Errors. Front Cell Neurosci, 12, 524. https://doi.org/10.3389/fncel.2018.00524

    Article  PubMed  Google Scholar 

  123. Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A.-M.K., Pardo, J. V., Fox, P. T., & Petersen, S. E. (1994). Practice-related Changes in Human Brain Functional Anatomy during Nonmotor Learning. Cerebral Cortex, 4(1), 8–26. https://doi.org/10.1093/cercor/4.1.8%JCerebralCortex

    CAS  Article  PubMed  Google Scholar 

  124. Reichert, J. L., Chocholous, M., Leiss, U., Pletschko, T., Kasprian, G., Furtner, J., & Dorfer, C. (2017). Neuronal correlates of cognitive function in patients with childhood cerebellar tumor lesions. PLoS ONE, 12(7), e0180200. https://doi.org/10.1371/journal.pone.0180200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. Reineberg, A. E., Andrews-Hanna, J. R., Depue, B. E., Friedman, N. P., & Banich, M. T. (2015). Resting-state networks predict individual differences in common and specific aspects of executive function. NeuroImage, 104, 69–78. https://doi.org/10.1016/j.neuroimage.2014.09.045

    Article  PubMed  Google Scholar 

  126. Riva, D., Taddei, M., & Bulgheroni, S. (2018). The neuropsychology of basal ganglia. Eur J Paediatr Neurol, 22(2), 321–326. https://doi.org/10.1016/j.ejpn.2018.01.009

    Article  PubMed  Google Scholar 

  127. Ronning, C., Sundet, K., Due-Tonnessen, B., Lundar, T., & Helseth, E. (2005). Persistent cognitive dysfunction secondary to cerebellar injury in patients treated for posterior fossa tumors in childhood. Pediatric Neurosurgery, 41(1), 15–21. https://doi.org/10.1159/000084860

    Article  PubMed  Google Scholar 

  128. Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2011). Modeling a cascade of effects: The role of speed and executive functioning in preterm/full-term differences in academic achievement. Dev Sci, 14(5), 1161–1175. https://doi.org/10.1111/j.1467-7687.2011.01068.x

    Article  PubMed  Google Scholar 

  129. Rubia, K., Smith, A. B., Taylor, E., & Brammer, M. (2007). Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Human Brain Mapping, 28(11), 1163–1177. https://doi.org/10.1002/hbm.20347

    Article  PubMed  PubMed Central  Google Scholar 

  130. Schel, M. A., Ridderinkhof, K. R., & Crone, E. A. (2014). Choosing not to act: neural bases of the development of intentional inhibition. Dev Cogn Neurosci, 10, 93–103. https://doi.org/10.1016/j.dcn.2014.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  131. Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 62–75. https://doi.org/10.1016/j.neulet.2018.07.005

    CAS  Article  PubMed  Google Scholar 

  132. Schmahmann, J. D., Guell, X., Stoodley, C. J., & Halko, M. A. (2019). The Theory and Neuroscience of Cerebellar Cognition. Annual Review of Neuroscience, 42, 337–364. https://doi.org/10.1146/annurev-neuro-070918-050258

    CAS  Article  PubMed  Google Scholar 

  133. Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561–579. https://doi.org/10.1093/brain/121.4.561

    Article  PubMed  Google Scholar 

  134. Schneider, M., Retz, W., Coogan, A., Thome, J., & Rosler, M. (2006). Anatomical and functional brain imaging in adult attention-deficit/hyperactivity disorder (ADHD)–a neurological view. European Archives of Psychiatry and Clinical Neuroscience, 256(Suppl 1), i32-41. https://doi.org/10.1007/s00406-006-1005-3

    Article  PubMed  Google Scholar 

  135. Schreiber, J. E., Palmer, S. L., Conklin, H. M., Mabbott, D. J., Swain, M. A., Bonner, M. J., & Gajjar, A. (2017). Posterior fossa syndrome and long-term neuropsychological outcomes among children treated for medulloblastoma on a multi-institutional, prospective study. Neuro-oncology, 19(12), 1673–1682.

    Article  Google Scholar 

  136. Semmel, S. E., Dotson, V. M., Burns, T. G., Mahle, W. T., & King, T. Z. (2018). Posterior Cerebellar Volume and Executive Function in Young Adults With Congenital Heart Disease. J Int Neuropsychol Soc, 1–10. https://doi.org/10.1017/S1355617718000310

  137. Siman-Tov, T., Granot, R. Y., Shany, O., Singer, N., Hendler, T., & Gordon, C. R. (2019). Is there a prediction network? Meta-analytic evidence for a cortical-subcortical network likely subserving prediction. Neuroscience and Biobehavioral Reviews, 105, 262–275. https://doi.org/10.1016/j.neubiorev.2019.08.012

    Article  PubMed  Google Scholar 

  138. Steinberg, S. N., Greenfield, J. P., & Perrine, K. (2020). Neuroanatomic Correlates for the Neuropsychological Manifestations of Chiari Malformation Type I. World Neurosurgery, 136, 462–469. https://doi.org/10.1016/j.wneu.2020.01.149

    Article  PubMed  Google Scholar 

  139. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654. https://doi.org/10.1126/science.153.3736.652

    CAS  Article  PubMed  Google Scholar 

  140. Stoodley, C. J. (2014). Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci, 8, 92. https://doi.org/10.3389/fnsys.2014.00092

    Article  PubMed  PubMed Central  Google Scholar 

  141. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44(2), 489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039

    Article  PubMed  Google Scholar 

  142. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831–844. https://doi.org/10.1016/j.cortex.2009.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  143. Thomas, L. A., Hall, J. M., Skup, M., Jenkins, S. E., Pine, D. S., Leibenluft, E., et al. (2011). A developmental neuroimaging investigation of the change paradigm. Dev Sci, 14(1), 148–161. https://doi.org/10.1111/j.1467-7687.2010.00967.x

    Article  PubMed  PubMed Central  Google Scholar 

  144. Treit, S., Chen, Z., Rasmussen, C., & Beaulieu, C. (2014). White matter correlates of cognitive inhibition during development: A diffusion tensor imaging study. Neuroscience, 276, 87–97. https://doi.org/10.1016/j.neuroscience.2013.12.019

    CAS  Article  PubMed  Google Scholar 

  145. Vaidya, C. J. (2012). Neurodevelopmental abnormalities in ADHD. Curr Top Behav Neurosci, 9, 49–66. https://doi.org/10.1007/7854_2011_138

    Article  PubMed  PubMed Central  Google Scholar 

  146. van den Bosch, G. E., El Marroun, H., Schmidt, M. N., Tibboel, D., Manoach, D. S., Calhoun, V. D., et al. (2014). Brain connectivity during verbal working memory in children and adolescents. Human Brain Mapping, 35(2), 698–711. https://doi.org/10.1002/hbm.22193

    Article  PubMed  Google Scholar 

  147. Voeller, K. K. (1991). What can neurological models of attention, intention, and arousal tell us about attention-deficit hyperactivity disorder? The Journal of Neuropsychiatry and Clinical Neurosciences, 3(2), 209–216. https://doi.org/10.1176/jnp.3.2.209

    CAS  Article  PubMed  Google Scholar 

  148. Volpe, J. J. (2009). Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. Journal of Child Neurology, 24(9), 1085–1104. https://doi.org/10.1177/0883073809338067

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wang, S., Yang, Y., Xing, W., Chen, J., Liu, C., Luo, X., et al. (2013). Altered neural circuits related to sustained attention and executive control in children with ADHD: An event-related fMRI study. Clinical Neurophysiology, 124(11), 2181–2190. https://doi.org/10.1016/j.clinph.2013.05.008

    Article  PubMed  Google Scholar 

  150. Wendelken, C., Munakata, Y., Baym, C., Souza, M., & Bunge, S. A. (2012). Flexible rule use: Common neural substrates in children and adults. Dev Cogn Neurosci, 2(3), 329–339. https://doi.org/10.1016/j.dcn.2012.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  151. Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 1336–1346. https://doi.org/10.1016/j.biopsych.2005.02.006

    Article  PubMed  Google Scholar 

  152. Wochos, G. C., Semerjian, C. H., & Walsh, K. S. (2014). Differences in parent and teacher rating of everyday executive function in pediatric brain tumor survivors. Clin Neuropsychol, 28(8), 1243–1257. https://doi.org/10.1080/13854046.2014.971875

    CAS  Article  PubMed  Google Scholar 

  153. Wolfe, K. R., Madan-Swain, A., Hunter, G. R., Reddy, A. T., Banos, J., & Kana, R. K. (2013). An fMRI investigation of working memory and its relationship with cardiorespiratory fitness in pediatric posterior fossa tumor survivors who received cranial radiation therapy. Pediatric Blood & Cancer, 60(4), 669–675. https://doi.org/10.1002/pbc.24331

    Article  Google Scholar 

  154. Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Netw, 11(7–8), 1317–1329. https://doi.org/10.1016/s0893-6080(98)00066-5

    CAS  Article  PubMed  Google Scholar 

  155. Yaple, Z., & Arsalidou, M. (2018). N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children. Child Development, 89(6), 2010–2022. https://doi.org/10.1111/cdev.13080

    Article  PubMed  Google Scholar 

  156. Yaple, Z. A., Stevens, W. D., & Arsalidou, M. (2019). Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. NeuroImage, 196, 16–31. https://doi.org/10.1016/j.neuroimage.2019.03.074

    Article  PubMed  Google Scholar 

  157. Zawacki, T., Friedman, J. H., Grace, J., & Shetty, N. (2000). Cerebellar toxicity of cytosine arabinoside: Clinical and neuropsychological signs. Neurology, 55(8), 1234–1234.

    CAS  Article  Google Scholar 

  158. Zawacki, T. M., Grace, J., Friedman, J. H., & Sudarsky, L. (2002). Executive and emotional dysfunction in Machado-Joseph disease. Movement Disorders, 17(5), 1004–1010. https://doi.org/10.1002/mds.10033

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by Georgia State University Brains and Behavior Graduate Student Fellowships (E.S. & H.A.) and a Brains and Behavior Seed Grant (TZK).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tricia Z. King.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clark, S.V., Semmel, E., Aleksonis, H. et al. Cerebellar-Subcortical-Cortical Systems as Modulators of Cognitive Functions. Neuropsychol Rev (2021). https://doi.org/10.1007/s11065-020-09465-1

Download citation

Keywords

  • Cerebellum
  • Executive functions
  • Working memory
  • Planning
  • Inhibition
  • Cognitive flexibility
  • Processing speed
  • Attention
  • Brain tumor
  • Attention deficit hyperactivity disorder