Advertisement

Neuropsychology Review

, Volume 28, Issue 1, pp 16–31 | Cite as

Prosaccade and Antisaccade Paradigms in Persons with Alzheimer’s Disease: A Meta-Analytic Review

  • Naomi Kahana Levy
  • Michal Lavidor
  • Eli Vakil
Review
  • 205 Downloads

Abstract

Persons with Mild Cognitive Impairment (MCI) are at high Alzheimer’s Disease (AD) risk but the development of sensitive measures to assess subtle cognitive decline in this population poses a major challenge for clinicians and researchers. Eye movement monitoring is a non-invasive, sensitive way to assess subtle cognitive processes in clinical populations. We conducted a critical review and a meta-analysis of the literature on pro and antisaccade paradigm in AD/MCI. The meta-analysis included 20 studies, all of which used the prosaccade paradigm and 13 of which studied the antisaccade paradigm as well. Our meta-analysis showed that AD but not MCI patients showed longer prosaccade latencies when compared to controls. While antisaccade latencies did not differentiate between patients from controls, antisaccade error rate were significantly increased among patients in comparison to controls in over 87% of the studies. These findings highlight antisaccade error rate as a reliable tool to distinguish inhibition abilities between AD/MCI and healthy older persons.

Keywords

Prosaccade Antisaccade Meta-analysis Review Alzheimer’s Disease Mild cognitive impairment 

Notes

Compliance with Ethical Standards

Conflict of Interest

All authors report no disclosures or conflict of interest.

References

  1. Abel, L. A., Unverzagt, F., & Yee, R. D. (2002). Effects of stimulus predictability and interstimulus gap on saccades in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 13(4), 235–243.CrossRefPubMedGoogle Scholar
  2. Alichniewicz, K. K., Brunner, F., Klünemann, H. H., & Greenlee, M. W. (2013). Neural correlates of saccadic inhibition in healthy elderly and patients with amnestic mild cognitive impairment. Frontiers in Psychology, 4, 467.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alzheimer’s Association. (2015). 2015 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 11(3), 332–384.CrossRefGoogle Scholar
  4. Anderson, T. J., & MacAskill, M. R. (2013). Eye movements in patients with neurodegenerative disorders. Nature Reviews Neurology, 9(2), 74–85.CrossRefPubMedGoogle Scholar
  5. Bélanger, S., Belleville, S., & Gauthier, S. (2010). Inhibition impairments in Alzheimer's disease, mild cognitive impairment and healthy aging: Effect of congruency proportion in a Stroop task. Neuropsychologia, 48(2), 581–590.CrossRefPubMedGoogle Scholar
  6. Biscaldi, M., Fischer, B., & Hartnegg, K. (2000). Voluntary saccadic control in dyslexia. Perception, 29(5), 509–521.CrossRefPubMedGoogle Scholar
  7. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, UK: Wiley.CrossRefGoogle Scholar
  8. Boxer, A. L., Garbutt, S., Rankin, K. P., Hellmuth, J., Neuhaus, J., Miller, B. L., et al. (2006). Medial versus lateral frontal lobe contributions to voluntary saccade control as revealed by the study of patients with frontal lobe degeneration. Journal of Neuroscience, 26(23), 6354–6363.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boxer, A. L., Garbutt, S., Seeley, W. W., Jafari, A., Heuer, H. W., Mirsky, J., et al. (2012). Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Archives of Neurology, 69(4), 509–517.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523.CrossRefPubMedGoogle Scholar
  11. Bylsma, F. W., Rasmusson, D. X., Rebok, G. W., Keyl, P. M., Tune, L., & Brandt, J. (1995). Changes in visual fixation and saccadic eye movements in Alzheimer's disease. International Journal of Psychophysiology, 19(1), 33–40.CrossRefPubMedGoogle Scholar
  12. Crawford, T. J., Devereaux, A., Higham, S., & Kelly, C. (2015). The disengagement of visual attention in Alzheimer's disease: A longitudinal eye-tracking study. Frontiers in Aging Neuroscience, 7, 118.  https://doi.org/10.3389/fnagi.2015.00118.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Crawford, T. J., Higham, S., Mayes, J., Dale, M., Shaunak, S., & Lekwuwa, G. (2013). The role of working memory and attentional disengagement on inhibitory control: effects of aging and Alzheimer's disease. Age, 35(5), 1637–1650.CrossRefPubMedGoogle Scholar
  14. Crawford, T. J., Higham, S., Renvoize, T., Patel, J., Dale, M., Suriya, A., et al. (2005). Inhibitory control of saccadic eye movements and cognitive impairment in Alzheimer’s disease. Biological Psychiatry, 57(9), 1052–1060.CrossRefPubMedGoogle Scholar
  15. Crutcher, M. D., Calhoun-Haney, R., Manzanares, C. M., Lah, J. J., Levey, A. I., & Zola, S. M. (2009). Eye tracking during a visual paired comparison task as a predictor of early dementia. American Journal of Alzheimer's Disease and Other Dementias, 24(3), 258–266.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Currie, J., Ramsden, B., McArthur, C., & Maruff, P. (1991). Validation of a clinical antisaccadic eye movement test in the assessment of dementia. Archives of Neurology, 48(6), 644–648.CrossRefPubMedGoogle Scholar
  17. Deubel, H., & Schneider, W. X. (2003). Delayed saccades, but not delayed manual aiming movements, require visual attention shifts. Annals of the New York Academy of Sciences, 1004(1), 289–296.CrossRefPubMedGoogle Scholar
  18. Eenshuistra, R. M., Ridderinkhof, K. R., & van der Molen, M. W. (2004). Age-related changes in antisaccade task performance: Inhibitory control or working-memory engagement? Brain and Cognition, 56(2), 177–188.CrossRefPubMedGoogle Scholar
  19. Fletcher, W. A., & Sharpe, J. A. (1986). Saccadic eye movement dysfunction in Alzheimer's disease. Annals of Neurology, 20(4), 464–471.CrossRefPubMedGoogle Scholar
  20. Garbutt, S., Matlin, A., Hellmuth, J., Schenk, A. K., Johnson, J. K., Rosen, H., et al. (2008). Oculomotor function in frontotemporal lobar degeneration, related disorders and Alzheimer's disease. Brain, 131(5), 1268–1281.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gurnani, A. S., & Gavett, B. E. (2017). The differential effects of Alzheimer's Disease and lewy body pathology on cognitive performance: A meta-analysis. [journal article]. Neuropsychology Review, 27(1), 1–17.  https://doi.org/10.1007/s11065-016-9334-0.CrossRefPubMedGoogle Scholar
  22. Hannula, D. E., Althoff, R. R., Warren, D. E., Riggs, L., Cohen, N. J., & Ryan, J. D. (2010). Worth a glance: Using eye movements to investigate the cognitive neuroscience of memory. Frontiers in Human Neuroscience, 4(166), 52–67.Google Scholar
  23. Hannula, D. E., Ryan, J. D., Tranel, D., & Cohen, N. J. (2007). Rapid onset relational memory effects are evident in eye movement behavior, but not in hippocampal amnesia. Journal of Cognitive Neuroscience, 19(10), 1690–1705.CrossRefPubMedGoogle Scholar
  24. Hershey, L. A., Whicker, L., Abel, L. A., Dell'Osso, L., Traccis, S., & Grossniklaus, D. (1983). Saccadic latency measurements in dementia. Archives of Neurology, 40(9), 592–593.CrossRefPubMedGoogle Scholar
  25. Heuer, H. W., Mirsky, J. B., Kong, E. L., Dickerson, B. C., Miller, B. L., Kramer, J. H., et al. (2013). Antisaccade task reflects cortical involvement in mild cognitive impairment. Neurology, 81(14), 1235–1243.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Higgins, J. P., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions (Vol. 4). UK: John Wiley & Sons.Google Scholar
  27. Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology, 43(3), 302–313.CrossRefPubMedGoogle Scholar
  28. Jadad, A. R., Moore, R. A., Carroll, D., Jenkinson, C., Reynolds, D. J. M., Gavaghan, D. J., et al. (1996). Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controlled Clinical Trials, 17(1), 1–12.CrossRefPubMedGoogle Scholar
  29. Jak, A. J., Preis, S. R., Beiser, A. S., Seshadri, S., Wolf, P. A., Bondi, M. W., et al. (2016). Neuropsychological Criteria for Mild Cognitive Impairment and Dementia Risk in the Framingham Heart Study. Journal of the International Neuropsychological Society, 1-7.Google Scholar
  30. Kalesnykas, R., & Hallett, P. (1994). Retinal eccentricity and the latency of eye saccades. Vision Research, 34(4), 517–531.CrossRefPubMedGoogle Scholar
  31. Kaufman, L. D., Pratt, J., Levine, B., & Black, S. E. (2010). Antisaccades: A probe into the dorsolateral prefrontal cortex in Alzheimer's disease. A critical review. Journal of Alzheimer's Disease, 19(3), 781–793.CrossRefPubMedGoogle Scholar
  32. Kaufman, L. D., Pratt, J., Levine, B., & Black, S. E. (2012). Executive deficits detected in mild Alzheimer's disease using the antisaccade task. Brain and Behavior, 2(1), 15–21.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kent, B., Hvoslef-Eide, M., Saksida, L., & Bussey, T. (2016). The representational–hierarchical view of pattern separation: Not just hippocampus, not just space, not just memory? Neurobiology of Learning and Memory, 129, 99–106.CrossRefPubMedGoogle Scholar
  34. Lagun, D., Manzanares, C., Zola, S. M., Buffalo, E. A., & Agichtein, E. (2011). Detecting cognitive impairment by eye movement analysis using automatic classification algorithms. Journal of Neuroscience Methods, 201(1), 196–203.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Leigh, R., & Kennard, C. (2004). Using saccades as a research tool in the clinical neurosciences. Brain, 127(3), 460–477.CrossRefPubMedGoogle Scholar
  36. Mewborn, C. M., Lindbergh, C. A., & Stephen Miller, L. (2017). Cognitive Interventions for cognitively healthy, mildly impaired, and mixed samples of older adults: A systematic review and meta-analysis of randomized-controlled trials. Neuropsychology Review.  https://doi.org/10.1007/s11065-11017-19350-11068.
  37. Michie, S., Abraham, C., Whittington, C., McAteer, J., & Gupta, S. (2009). Effective techniques in healthy eating and physical activity interventions: a meta-regression. Health Psychology, 28(6), 690–701.CrossRefPubMedGoogle Scholar
  38. Mielke, R., Kessler, J., Fink, G., Herholz, K., & Heiss, W.-D. (1995). Dysfunction of visual cortex contributes to disturbed processing of visual information in Alzheimer's disease. International Journal of Neuroscience, 82(1–2), 1–9.CrossRefPubMedGoogle Scholar
  39. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202.CrossRefPubMedGoogle Scholar
  40. Minshew, N. J., Luna, B., & Sweeney, J. A. (1999). Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology, 52(5), 917–917.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mitchell, A. J., & Shiri-Feshki, M. (2009). Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica, 119(4), 252–265.CrossRefPubMedGoogle Scholar
  42. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264–269.CrossRefPubMedGoogle Scholar
  43. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Molitor, R. J., Ko, P. C., & Ally, B. A. (2015). Eye movements in Alzheimer's disease. Journal of Alzheimer's Disease, 44(1), 1–12.PubMedPubMedCentralGoogle Scholar
  45. Mosimann, U. P., Müri, R. M., Burn, D. J., Felblinger, J., O'Brien, J. T., & McKeith, I. G. (2005). Saccadic eye movement changes in Parkinson's disease dementia and dementia with Lewy bodies. Brain, 128(6), 1267–1276.CrossRefPubMedGoogle Scholar
  46. Moss, R. A. (2016). A theory on the singular function of the hippocampus: Facilitating the binding of new circuits of cortical columns. AIMS Neuroscience, 3(3), 264–305.CrossRefGoogle Scholar
  47. Nakashima, Y., Morita, K., Ishii, Y., Shouji, Y., & Uchimura, N. (2010). Characteristics of exploratory eye movements in elderly people: possibility of early diagnosis of dementia. Psychogeriatrics, 10(3), 124–130.CrossRefPubMedGoogle Scholar
  48. O’Driscoll, G. A., Dépatie, L., Holahan, A.-L. V., Savion-Lemieux, T., Barr, R. G., Jolicoeur, C., et al. (2005). Executive functions and methylphenidate response in subtypes of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1452–1460.CrossRefPubMedGoogle Scholar
  49. Okonkwo, O. C., Wadley, V. G., Ball, K., Vance, D. E., & Crowe, M. (2008). Dissociations in visual attention deficits among persons with mild cognitive impairment. Aging Neuropsychol C, 15(4), 492–505.CrossRefGoogle Scholar
  50. Peltsch, A., Hemraj, A., Garcia, A., & Munoz, D. (2011). Age-related trends in saccade characteristics among the elderly. Neurobiology of Aging, 32(4), 669–679.CrossRefPubMedGoogle Scholar
  51. Peltsch, A., Hemraj, A., Garcia, A., & Munoz, D. P. (2014). Saccade deficits in amnestic mild cognitive impairment resemble mild Alzheimer's disease. European Journal of Neuroscience, 39(11), 2000–2013.CrossRefPubMedGoogle Scholar
  52. Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256(3), 183–194.CrossRefPubMedGoogle Scholar
  53. Petersen, R. C., & Bennett, D. (2005). Mild cognitive impairment: is it Alzheimer's disease or not? Journal of Alzheimer's Disease, 7(3), 241–245.CrossRefPubMedGoogle Scholar
  54. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.CrossRefPubMedGoogle Scholar
  55. Pratt, J., Abrams, R. A., & Chasteen, A. L. (1997). Initiation and inhibition of saccadic eye movements in younger and older adults: An analysis of the gap effect. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 52(2), P103-P107.Google Scholar
  56. Pratt, J., Dodd, M., & Welsh, T. (2006). Growing older does not always mean moving slower: examining aging and the saccadic motor system. Journal of Motor Behavior, 38(5), 373–382.CrossRefPubMedGoogle Scholar
  57. Rosenthal, R. (1991). Meta-analytic procedures for social research (Vol. 6): Sage.Google Scholar
  58. Rösler, A., Mapstone, M. E., Hays, A. K., Mesulam, M., Rademaker, A., Gitelman, D. R., et al. (2000). Alterations of visual search strategy in Alzheimer's disease and aging. Neuropsychology, 14(3), 398–408.CrossRefPubMedGoogle Scholar
  59. Rüb, U., Del Tredici, K., Schultz, C., Büttner-Ennever, J., & Braak, H. (2001). The premotor region essential for rapid vertical eye movements shows early involvement in Alzheimer's disease-related cytoskeletal pathology. Vision Research, 41(16), 2149–2156.CrossRefPubMedGoogle Scholar
  60. Ryan, J. D., Althoff, R. R., Whitlow, S., & Cohen, N. J. (2000). Amnesia is a deficit in relational memory. Psychological Science, 11(6), 454–461.CrossRefPubMedGoogle Scholar
  61. Sánchez-Meca, J., & Marín-Martínez, F. (1997). Homogeneity tests in meta-analysis: A Monte Carlo comparison of statistical power and Type I error. Quality and Quantity, 31(4), 385–399.CrossRefGoogle Scholar
  62. Santana, R., Mendiburu, A., & Lozano, J. A. (2015). Multi-view classification of psychiatric conditions based on saccades. Applied Soft Computing, 31, 308–316.CrossRefGoogle Scholar
  63. Saslow, M. (1967). Effects of components of displacement-step stimuli upon latency for saccadic eye movement. JOSA, 57(8), 1024–1029.CrossRefGoogle Scholar
  64. Scinto, L. F., Daffner, K. R., Castro, L., Weintraub, S., Vavrik, M., & Mesulam, M. M. (1994). Impairment of spatially directed attention in patients with probable Alzheimer's disease as measured by eye movements. Archives of Neurology, 51(7), 682–688.CrossRefPubMedGoogle Scholar
  65. Seligman, S. C., & Giovannetti, T. (2015). The potential utility of eye movements in the detection and characterization of everyday functional difficulties in mild cognitive impairment. Neuropsychology Review, 25(2), 199–215.CrossRefPubMedGoogle Scholar
  66. Shafiq-Antonacci, R., Maruff, P., Masters, C., & Currie, J. (2003). Spectrum of saccade system function in Alzheimer disease. Archives of Neurology, 60(9), 1272–1278.CrossRefPubMedGoogle Scholar
  67. Shakespeare, T., Yong, K., Kaski, D., Schott, J. M., & Crutch, S. (2014). Abnormalities of fixation, saccade, and pursuit in posterior cortical atrophy compared to typical AD. Alzheimer's & Dementia, 10(4), P199.CrossRefGoogle Scholar
  68. Silverberg, N. B., Ryan, L. M., Carrillo, M. C., Sperling, R., Petersen, R. C., Posner, H. B., et al. (2011). Assessment of cognition in early dementia. Alzheimer's & Dementia, 7(3), e60–e76.CrossRefGoogle Scholar
  69. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.CrossRefPubMedGoogle Scholar
  70. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & Dementia, 7(3), 280–292.CrossRefGoogle Scholar
  71. Sperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., et al. (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Medicine, 12(1), 27–43.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Thulborn, K. R., Martin, C., & Voyvodic, J. T. (2000). Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer's disease and in cognitively able elderly volunteers. AJNR, 21(3), 524–531.PubMedGoogle Scholar
  73. Tzekov, R., & Mullan, M. (2014). Vision function abnormalities in Alzheimer disease. Survey of Ophthalmology, 59(4), 414–433.CrossRefPubMedGoogle Scholar
  74. Verheij, S., Muilwijk, D., Pel, J. J., van der Cammen, T. J., Mattace-Raso, F. U., & van der Steen, J. (2012). Visuomotor impairment in early-stage Alzheimer's disease: changes in relative timing of eye and hand movements. Journal of Alzheimer's Disease, 30(1), 131–143.PubMedGoogle Scholar
  75. Vos, S. J., Verhey, F., Frölich, L., Kornhuber, J., Wiltfang, J., Maier, W., et al. (2015). Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain, 138, 1327–1338.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Webb, T. L., Miles, E., & Sheeran, P. (2012). Dealing with feeling: A meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychological Bulletin, 138(4), 775–808.CrossRefPubMedGoogle Scholar
  77. Yang, Q., Wang, T., Su, N., Liu, Y., Xiao, S., & Kapoula, Z. (2011). Long latency and high variability in accuracy-speed of prosaccades in Alzheimer’s disease at mild to moderate stage. Dementia and Geriatric Cognitive Disorders Extra, 1(1), 318–329.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yang, Q., Wang, T., Su, N., Xiao, S., & Kapoula, Z. (2013). Specific saccade deficits in patients with Alzheimer’s disease at mild to moderate stage and in patients with amnestic mild cognitive impairment. Age, 35(4), 1287–1298.CrossRefPubMedGoogle Scholar
  79. Yeung, L.-K., Ryan, J. D., Cowell, R. A., & Barense, M. D. (2013). Recognition memory impairments caused by false recognition of novel objects. Journal of Experimental Psychology: General, 142(4), 1384–1397.CrossRefGoogle Scholar
  80. Yun, J.-Y., Lee, D. Y., Seo, E. H., Choo, I. H., Park, S. Y., Kim, S. G., et al. (2011). Neural correlates of stroop performance in Alzheimer’s disease: a FDG-PET study. Dementia and Geriatric Cognitive Disorders Extra, 1(1), 190–201.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Psychology and the Gonda Brain Research CenterBar Ilan UniversityRamat GanIsrael
  2. 2.NehushaIsrael

Personalised recommendations