Neuropsychology Review

, Volume 24, Issue 2, pp 185–199 | Cite as

Language Mapping with Verbs and Sentences in Awake Surgery: A Review



Intraoperative language mapping in awake surgery is typically conducted by asking the patient to produce automatic speech and to name objects. These tasks might not map language with sufficient accuracy, as some linguistic processes can only be triggered by tasks that use verbs and sentences. Verb and sentence processing tasks are currently used during surgery, albeit sparsely. Medline, PubMed, and Web of Science records were searched to retrieve studies focused on language mapping with verbs/sentences in awake surgery. We review the tasks reported in the published literature, spell out the language processes assessed by each task, list the cortical and subcortical regions whose stimulation inhibited language processing, and consider the types of errors elicited by stimulation in each region. We argue that using verb tasks allows a more thorough evaluation of language functions. We also argue that verb tasks are preferable to object naming tasks in the case of frontal lesions, as lesion and neuroimaging data demonstrate that these regions play a critical role in verb and sentence processing. We discuss the clinical value of these tasks and the current limitations of the procedure, and provide some guidelines for their development. Future research should aim toward a differentiated approach to language mapping – one that includes the administration of standardized and customizable tests and the use of longitudinal neurocognitive follow-up studies. Further work will allow researchers and clinicians to understand brain and language correlates and to improve the current surgical practice.


Awake surgery Language mapping Sentence processing tasks Verb processing tasks Review 



Arcuate fasciculus


Angular gyrus


Blood oxygenation level dependent


Event-related potential


Fronto-parietal articulatory loop


Human immunodeficiency virus-1


Inferior frontal gyrus


Inferior fronto-occipital fasciculus


Inferior longitudinal fasciculus


Inferior temporal gyrus




Middle frontal gyrus


Middle temporal gyrus


Middle longitudinal fasciculus


Periventricular white matter


Postcentral gyrus


Precentral gyrus


Superior frontal gyrus


Superior longitudinal fasciculus


Supramarginal gyrus


Superior temporal gyrus


Subcallosal fasciculus


Uncinate fasciculus


Author Note

Funding was provided by the PAT (Provincia Autonoma di Trento) and Fondazione CaRiTRo (Cassa di Risparmio di Trento e Rovereto) to GM; and by the Erasmus Mundus PhD Program IDEALAB (International Doctorate for Experimental Approaches to Language And Brain: Macquarie University, Newcastle University, University of Groningen, University of Trento and University of Potsdam) to AR. The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.


  1. Adhikary, S., Thiruvenkatarajan, V., Babu, K., & Tharyan, P. (2011). The effects of anaesthetic agents on cortical mapping during neurosurgical procedures involving eloquent areas of the brain. Cochrane Database of Systematic Reviews, 11, 1–12. doi: 10.1002/14651858.CD006679.pub2.Google Scholar
  2. Bastiaanse, R., Bamyaci, E., Hsu, C.-J., Lee, J., Yarbay Duman, T., & Thompson, C. K. (2011). Time reference in agrammatic aphasia: a cross-linguistic study. Journal of Neurolinguistics, 24, 652–673. doi: 10.1016/j.jneuroling.2011.07.001.Google Scholar
  3. Bastiaanse, R., & Jonkers, R. (1998). Verb retrieval in action naming and spontaneous speech in agrammatic and anomic aphasia. Aphasiology, 12(11), 951–969. doi: 10.1080/02687039808249463.Google Scholar
  4. Bastiaanse, R., & Van Zonneveld, R. (2004). Broca’s aphasia, verbs and the mental lexicon. Brain and Language, 90(1–3), 198–202. doi: 10.1016/S0093-934X(03)00432-2.PubMedGoogle Scholar
  5. Bastiaanse, R., Edwards, S., Maas, E., & Rispens, J. (2003). Assessing comprehension and production of verbs and sentences: the Verb and Sentence Test (VAST). Aphasiology, 17(1), 49–73. doi: 10.1080/02687030244000455.Google Scholar
  6. Bell, B. D., Davies, K. G., Hermann, B. P., & Walters, G. (2000). Confrontation naming after anterior temporal lobectomy is related to age of acquisition of the object names. Neuropsychologia, 38, 83–92. doi: 10.1016/S0028-3932(99)00047-0.PubMedGoogle Scholar
  7. Bello, L., Acerbi, F., Giussani, C., Baratta, P., Taccone, P., Songa, V., Fava, M., Stocchetti, N., Papagno C., & Gaini SM. (2006). Intraoperative language localization in multilingual patients with gliomas. Neurosurgery, 59(1), 115-25. doi: 10.1227/01.NEU.0000219241.92246.FB Google Scholar
  8. Bello, L., Galluci, M., Fava, M., Carraba, G., Giussani, C., Acerbi, F., et al. (2007). Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery, 60(1), 67–82. doi: 10.1227/01.NEU.0000249206.58601.DE.PubMedGoogle Scholar
  9. Bello, L., Gambini, A., Castellano, A., Carraba, G., Acerbi, F., Fava, E., et al. (2008). Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. NeuroImage, 39(1), 369–382. Retrieved from Scholar
  10. Benzagmout, M., Gatignol, P., & Duffau, H. (2007). Resection of world health organization grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery, 61(4), 741–753. doi: 10.1227/01.NEU.0000280069.13468.B2.PubMedGoogle Scholar
  11. Berger, M. S. (1996). Minimalism through intraoperative functional mapping. Clinical Neurosurgery, 43, 324–337. Retrieved from Scholar
  12. Berndt, R. S., Haendiges, A. N., Burton, M. W., & Mitchum, C. C. (2002). Grammatical class and imageability in aphasic word production: their effects are independent. Journal of Neurolinguistics, 15, 353–371. doi: 10.1016/S0911-6044(01)00030-6.Google Scholar
  13. Binder, J. R., Swanson, S. J., Hammeke, T. A., & Sabsevitz, D. S. (2008). A compraison of five fMRI protocols for mapping speech comprehension systems. Epilepsia, 49(12), 1980–1997. doi: 10.1111/j.1528-1167.2008.01683.x.PubMedCentralPubMedGoogle Scholar
  14. Bizzi, A., Blasi, V., Falini, A., Ferroli, P., Cadioli, M., Danesi, U., et al. (2008). Presurgical functional MR Imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology, 248(2), 579–589. doi: 10.1148/radiol.2482071214.PubMedGoogle Scholar
  15. Bookheimer, S. Y., Zeffiro, T. A., Blaxton, T. A., Gaillard, W., & Theodore, W. H. (2000). Activation of language cortex with automatic speech tasks. Neurology, 55, 1151–1157. doi: 10.1212/WNL.55.8.1151.PubMedGoogle Scholar
  16. Borchers, S., Himmelbach, M., Logethetis, N., & Karnath, H. O. (2011). Direct electrical stimulation of human cortex – the gold standard for mapping brain functions? Nature Reviews Neuroscience, 13, 63–70. doi: 10.1038/nrn3140.PubMedGoogle Scholar
  17. Borius, P. Y., Giussani, C., Draper, L., & Roux, F. E. (2012). Sentence translation in proficient bilinguals: a direct electrostimulation brain mapping. Cortex, 48(5), 614–622. doi: 10.1016/j.cortex.2011.01.011.PubMedGoogle Scholar
  18. Caramazza, A. (1997). How many levels of processing are there in lexical access? Cognitive Neuropsychology, 14(1), 177–208. doi: 10.1080/026432997381664.Google Scholar
  19. Corina, D. P., Gibson, E. K., Martin, R., Poliakov, A., Brinkley, J., & Ojemann, G. (2005). Dissociation of action and object naming: evidence from cortical stimulation mapping. Human Brain Mapping, 24(1), 1–10. doi: 10.1002/hbm.20063.PubMedGoogle Scholar
  20. Coltheart, M. (2001). Assumptions and methods in cognitive neuropsychology. In B. Rapp (Ed.), The handbook of cognitive neuropsychology (pp. 3–21). Philadelphia, PA: Psychology Press.Google Scholar
  21. Damasio, A. R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences of the United States of America, 90(11), 4957–4960. doi: 10.1073/pnas.90.11.4957.PubMedCentralPubMedGoogle Scholar
  22. Davis, M. H., Meunier, F., & Marslen-Wilson, W. D. (2004). Neural responses to morphological, syntactic and semantic properties of single words: an fMRI study. Brain and Language, 89, 439–449. doi: 10.1016/S0093-934X(03)00471-1.PubMedGoogle Scholar
  23. De Benedictis, A., & Duffau, H. (2011). Brain Hodotopy : from esoteric concept to practical surgical applications. Neurosurgery, 68, 1709–1723. doi: 10.1227/NEU.0b013e3182124690.PubMedGoogle Scholar
  24. De Bleser, R., & Kauschke, C. (2003). Acquisition and loss of nouns and verbs: parallel or divergent patterns? Journal of Neurolinguistics, 16, 213–229. doi: 10.1016/S0911-6044(02)00015-5.Google Scholar
  25. Desmurget, M., Song, Z., Mottolese, C., & Sirigu. (2013). Re-establishing the merits of electrical brain stimulation. Trends in Cognitive Neuroscience, 17(9), 422–449. doi: 10.1016/j.tics.2013.07.002.Google Scholar
  26. De Witte, E., & Mariën, P. (2013). The neurolingistic approach to awake surgery reviewed. Clinical Neurology and Neurosurgery, 115(5), 127–145. doi: 10.1016/j.clineuro.2012.09.015.PubMedGoogle Scholar
  27. De Witt Hammer, P. C., Gil Robles, S., Zwinderman, A. H., Duffau, H., & Berger, M. S. (2012). Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. Journal of Clinical Oncology, 30(20), 2559–2565. doi: 10.1200/JCO.2011.38.4818.Google Scholar
  28. Den Ouden, D. B., Fix, S., Parrish, T. B., & Thompson, C. K. (2009). Argument structure effects in action verb naming in static and dynamic conditions. Journal of Neurolinguistics, 22(2), 196–215. doi: 10.1016/j.neuroling.2008.10.004.Google Scholar
  29. Den Ouden, D. B., Hoogduin, H., Stowe, L., & Bastiaanse, R. (2008). Neural correlates of Dutch verb second in speech production. Brain and Language, 104(2), 122–131. doi: 10.1016/j.bandl.2007.05.001.Google Scholar
  30. Desmurget, M., Bonnetblanc, F., & Duffau, H. (2007). Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain, 130, 898–914. doi: 10.1093/brain/awl300.PubMedGoogle Scholar
  31. Duffau, H. (2004). Cartographie fonctionelle per-opératoire per stimulations électriques directes: aspects méthodologiques. Neurochirugie, 50(4), 474–483.Google Scholar
  32. Duffau, H. (2005). Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumor and brain plasticity. The Lancet Neurology, 4(8), 476–486. doi: 10.1016/S1474-4422(05)70140-X
  33. Duffau, H. (2013). A new philosophy for diffuse-low grade glioma (DLGG): oncological and functional outcomes. Neurochirugie, 59(1), 2–8. doi: 10.1016/j.neuchi.2012.11.001.Google Scholar
  34. Duffau, H., Capelle, L., Denvil, D., Sichez, N., Gatignol, P., Taillandier, L., et al. (2003). Usefulness of intraoperative electrical subcortical mapping during for low-grade gliomas located within eloquent brain regions functional results in a consecutive series of 103 patients. Journal of Neurosurgery, 98, 764–778. Retrieved from Scholar
  35. Duffau, H., Capelle, L., Sichez, J., Faillot, T., Abdennour, L., Law Koune, J. D., et al. (1999). Intra-operative direct electrical stimulations of the central nervous system: the Salpêtrière experience with 60 patients. Acta Neurochirurgica, 141(11), 1157–1167. doi: 10.1007/s007010050413.PubMedGoogle Scholar
  36. Duffau, H., Lopes, M., Arthuis, F., Bitar, A., Sichez, J.-P., Van Effenterre, R., et al. (2005). Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. Journal of Neurology, Neurosurgery & Psychiatry, 76, 845–851. doi: 10.1136/jnnp.2004.048520.Google Scholar
  37. Federmeier, K. D., Segal, J. B., Lombrozo, T., & Kutas, M. (2000). Brain responses to nouns, verbs and class-ambiguous words in context. Brain, 123(12), 2252–2566. Retrieved from Scholar
  38. Fernández Coello, A., Moritz-Gasser, S., Martino, J., Martinoni, M., Matsuda, R., & Duffau, H. (2013). Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. Journal of Neurosurgery, 119(6), 1380–1394. doi: 10.3171/2013.6.JNS122470.PubMedGoogle Scholar
  39. Finocchiaro, C., Basso, G., Giovenzana, A., & Caramazza, A. (2010). Morphological complexity reveals verb-specific prefrontal engagement. Journal of Neurolinguistics, 23(6), 553–563. doi: 10.1016/j.jneuroling.2010.04.004.Google Scholar
  40. Finocchiaro, C., & Miceli, G. (2002). Verb actionality in aphasia: data from two aphasic subjects. Folia Linguistica, 36(3–4), 335–357. doi: 10.1515/flin.2002.36.3-4.335.Google Scholar
  41. FitzGerald, D. B., Cosgrove, G. R., Ronner, S., Jiang, H., Buchbinder, B. R., Belliveau, J. W., et al. (1997). Location of language in cortex: a comparison between functional MR imaging and electrocortical stimulation. American Journal of Neuroradiology, 18(8), 1529–1539. Retrieved from Scholar
  42. Foki, T., Gartus, A., Geissler, A., & Beisteiner, R. (2008). Probing overtly spoken language at sentential level – A comprehensive high-field BOLD-fMRI protocol reflecting everyday demands. NeuroImage, 39, 1613–1624. doi: 10.1016/j.neuroimage.2007.10.020.PubMedGoogle Scholar
  43. Giussani, C., Roux, F.-E., Ojemann, J., Sganzerla, E. P., Pirillo, D., & Papagno, C. (2010). Is preoperative functional magnetic resonance imagining reliable for language areas mapping in brain tumor surgery? Review of language functional imaging and direct cortical stimulation correlation studies. Neurosurgery, 66, 113–120. doi: 10.1227/01.NEU.0000360392.15450.C9.PubMedGoogle Scholar
  44. Goodglass, H., & Wingfield, A. (1997). Word-finding deficits in aphasia: Brain-behavior relations and clinical symptomatology. In H. Goodglass & A. Wingfield (Eds.), Anomia: Neuroanatomical and cognitive correlates (pp. 3–27). San Diego, CA: Academic.Google Scholar
  45. Hamberger, M. J., & Tamny, T. R. (1999). Auditory naming and temporal lobe epilepsy. Epilepsy Research, 35(3), 229–243. doi: 10.1016/S0920-1211(99)00023-6.PubMedGoogle Scholar
  46. Hamberger, M., McClelland, S., McKhann, G. M., Williams, A. C., & Goodman, R. R. (2007). Distribution of auditory and visual naming sites in nonlesional temporal lobe epilepsy patients and patients with space-occupying temporal lobe lesions. Epilepsia, 48(3), 531–538. Retrieved from Scholar
  47. Hamberger, M., Seidel, W., Goodman, R. R., Perrine, K., & McKhann, G. M. (2003). Temporal lobe stimulation reveals anatomic distinction between auditory naming processes. Neurology, 60(9), 1478–1483. Retrieved from Scholar
  48. Hamberger, M., Seidel, W., McKhann, G. M., Perrine, K., & Goodman, R. R. (2005). Brain stimulation reveals critical auditory naming cortex. Brain, 128(11), 2742–2749. Retrieved from Scholar
  49. Herholz, K., Reulen, H. J., von Stockhausen, H. M., Thiel, A., Ilmberger, J., Kessler, J., et al. (1997). Preoperative activation and intraoperative stimulation of language-related areas in patients with glioma. Neurosurgery, 41(6), 1253–1262. Retrieved from Scholar
  50. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393–402. doi: 10.1038/nrn2113.PubMedGoogle Scholar
  51. Hillis, A. E., Tuffiash, E., & Caramazza, A. (2002). Modality-specific deterioration on naming verbs ion nonfluent, primary progressive aphasia. Journal of Cognitive Neuroscience, 14, 1099–1108. Retrieved from Scholar
  52. Howard, D., Swinburn, K., & Porter, G. (2010). Putting the CAT out: what the Comprehensive Aphasia Test has to offer. Aphasiology, 24(1), 56–74. doi: 10.1080/02687030802453202.Google Scholar
  53. Huncke, K., Van de Wiele, B., Itzhak, F., & Rubinstein, E. (1998). The asleep-awake-asleep anesthetic technique for intraoperative language mapping. Neurosurgery, 42(6), 1–9. doi: 10.1097/00006123-199806000-0006.Google Scholar
  54. Jonkers, R., & Bastiaanse, R. (2007). Action naming in anomic aphasic speakers: effects of instrumentality and name relation. Brain and Language, 102(3), 262–272. doi: 10.1016/j.bandl.2007.01.002.PubMedGoogle Scholar
  55. Kayama, T. (2012). The guidelines for Awake Craniotomy: guidelines committee of the Japan Awake Surgery Conference. Neurologia Medico-Chirurgica, 52, 119–141. Retrieved from Scholar
  56. Kemmerer, D., & Tranel, D. (2000). Verb retrieval in brain-damaged subjects : 1. analysis of stimulus, lexical, and conceptual factors. Brain and Language, 73, 347–392. doi: 10.1006/brln.2000.2311.PubMedGoogle Scholar
  57. Kemmerer, D., Rudrauf, D., Manzel, K., & Tranel, D. (2012). Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex, 48(7), 826–848. doi: 10.1016/j.cortex.2010.11.001.PubMedCentralPubMedGoogle Scholar
  58. Kertesz, A., & McCabe, P. (1977). Recovery patterns and prognosis in aphasia. Brain, 100, 1–18. Retrieved from Scholar
  59. Leclercq, D., Duffau, H., Delmaire, C., Capelle, L., Gatignol, P., Ducros, et al. (2010). Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. Journal of Neurosurgery, 112, 503–511. doi: 10.3171/2009.8.JNS09558.PubMedGoogle Scholar
  60. Levelt, W. J. M. (1989). Speaking: From intention to articulation. Cambridge, MA: MIT Press.Google Scholar
  61. Lotto, M., & Schubert, A. (2008). Anesthesia for epilepsy surgery. In H. Lüders (Ed.), Textbook of epilepsy surgery (pp. 921–930). London: Informa UK Ltd.Google Scholar
  62. Lubrano, V., Filleron, T., Démonet, J. F., & Roux, F. E. (2012). Anatomical correlates for category-specific naming of objects and actions: a brain stimulation mapping study. Human Brain Mapping [Epub ahead of print]. doi: 10.1002/hbm.22189.Google Scholar
  63. Luzzatti, C., Raggi, R., Zonca, G., Pistarini, C., Contardi, A., & Pinna, G. D. (2002). Verb-noun double dissociation in aphasic lexical impairments: the role of word frequency and imageability. Brain and Language, 444(81), 432–444. doi: 10.1006/brln.2001.2536.Google Scholar
  64. Marshall, J. C., & Newcombe, F. (1996). Syntactic and semantic errors in paralexia. Neuropsychologia, 4(2), 169–176. doi: 10.1016/0028-3932(66)90045-5.Google Scholar
  65. Mätzig, S., Druks, J., Masterson, J., & Vigliocco, G. (2009). Noun and verb differences in picture naming: past studies and new evidence. Cortex, 45(6), 738–758. doi: 10.1016/j.cortex.2008.10.003.PubMedGoogle Scholar
  66. Mehdorn, H. M., Goebel, S., & Nabavi, A. (2013). Direct cortical stimulation and fMRI. In S. Ulmer & O. Jansen (Eds.), fMRI – basics and clinical applications (pp. 169–175). Berlin Heidelberg: Springer.Google Scholar
  67. Metz-Lutz, M. N., Kremin, G., Deloche, G., Hannequin, D., Ferrand, I., Perrier, et al. (1991). Standardisation d’un test de dénomination orale: contrôle des effets de l'âge, du sexe et du niveau de scolarité chez les sujets adultes normaux. Revue de Neuropsychologie, 1, 73–95. Retrieved from Scholar
  68. Miceli, G., Capasso, R., Monti, A., Santini, B., & Talacchi, A. (2012). Language testing in brain tumor patients. Journal of Neurooncology, 108, 247–252. doi: 10.1007/s11060-012-0810-y.Google Scholar
  69. Miceli, G., Silvieri, C., Nocentini, U., & Caramazza, A. (1988). Patterns of dissociation in comprehension and production of nouns and verbs. Aphasiology, 2(3/4), 351–358. doi: 10.1080/02687038808248937.Google Scholar
  70. Miceli, G., Silvieri, C., Villa, G., & Caramazza, A. (1984). On the basis for the agrammatic’s difficulty in producing main verbs. Cortex, 20(2), 207–220. Retrieved from Scholar
  71. Moritz-Gasser, S., Herbet, G., Maldonado, I. L., & Duffau, H. (2012). Lexical access speed is significantly correlated with the return to professional activities after awake surgery for low-grade gliomas. Journal of Neurooncology, 107(3), 633–641. doi: 10.1007/s11060-011-0789-9.Google Scholar
  72. Morrison, C. M., Ellis, A. W., & Quinlan, P. T. (1992). Age of acquisition, not word frequency, affects object naming, not object recognition. Memory & Cognition, 20(6), 705–714. doi: 10.1016/j.actpsy.2008.05.005.Google Scholar
  73. Nickels, L., & Howard, D. (2004). Dissociating effects of number of phonemes, number of syllables, and syllablic complexity on word production in aphasia: it’s the number of phonemes that counts. Cognitive Neuropsychology, 21(1), 57–78. doi: 10.1080/02643290342000122.PubMedGoogle Scholar
  74. Ojemann, G., & Mateer, C. (1979). Human language cortex: localization of memory, syntax, and sequential motor-phoneme identification systems. Science, 205(4413), 1401–1403. Retrieved from Scholar
  75. Ojemann, G., Ojemann, J., Lettich, E., & Berger, M. (1989). Cortical language localization in left, dominant hemisphere. Journal of Neurosurgery, 108, 411–421. doi: 10.3171/JNS/2008/108/2/0411.Google Scholar
  76. Ojemann, J., Ojemann, G., & Lettich, E. (2002). Cortical stimulation mapping of language cortex by using a verb generation task: effects of learning and comparison to mapping based on object naming. Journal of Neurosurgery, 97(1), 33–38. doi: 10.3171/jns.2002.97.1.0033.PubMedGoogle Scholar
  77. Papagno, C., Galluci, M., Casarotti, A., Castellano, A., Falini, A., Fava, E., et al. (2011). Connectivity constraints on cortical reorganization of neural circuits involved in object naming. NeuroImage, 55(3), 1306–1313. doi: 10.1016/j.neuroimage.2011.01.005.PubMedGoogle Scholar
  78. Patterson, K. E., & Shewell, C. (1987). Speak and spell: Dissociations and word-class effects. In M. Coltheart, R. Job, & G. Sartori (Eds.), The cognitive neuropsychology of language (pp. 273–294). Hillsdale: Lawrence Erlbaum.Google Scholar
  79. Picht, T., Krieg, S. M., Sollmann, N., Rösler, J., Niraula, B., Neuvonen, T., et al. (2013). A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during surgery. Neurosurgery, 72(5), 808–819. doi: 10.1227/NEU.0b013e3182889e01.PubMedGoogle Scholar
  80. Pillon, A., & d’Honincthun, P. (2010). The organization of the conceptual system. The case of the “object versus action” dimension. Cognitive Neuropsychology, 27(7), 587–613. doi: 10.1080/02643294.2011.609652.Google Scholar
  81. Pulvermüller, F., & Shtyrov, Y. (2009). Spatiotemporal signatures for large-scale synfire chains for speech processing as revealed by MEG. Cerebral Cortex, 19(1), 79–88. doi: 10.1093/cercor/bhn060.PubMedCentralPubMedGoogle Scholar
  82. Roux, F. E., & Trémoulet, M. (2002). Organization of language areas in bilingual patients: a cortical stimulation study. Journal of Neurosurgery, 97(4), 857–864. Retrieved from Scholar
  83. Roux, F. E., Boulanouar, K., Lotterie, J. A., Mejdoubi, M., LeSage, J. P., & Berry, I. (2003). Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery, 52(6), 1335–1347. Retrieved from Scholar
  84. Roux, F. E., Lubrano, V., Lauwers-Cances, V., Trémoulet, M., Mascott, C. R., & Démonet, J. F. (2004). Intra-operative mapping of cortical areas involved in reading in mono- and bilingual patients. Brain, 127(8), 1796–1810. Retrieved from Scholar
  85. Sabsevitz, D. S., Swanson, S. J., Hammeke, T. A., Spanaki, M. V., Possing, E. T., Morris, G. L., et al. (2003). Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology, 60(11), 1788–1792. doi: 10.1212/01.WNL.0000068022.05644.01.PubMedGoogle Scholar
  86. Sach, M., Seitz, R. J., & Indefrey, P. (2004). Unified inflectional processing of regular and irregular verbs: a PET study. Neuroreport, 15(3), 533–537. doi: 10.1097/01.wnr.0000113529.32218.92.PubMedGoogle Scholar
  87. Sacko, O., Lawers-Cances, V., Brauge, D., Sesay, M., Brenner, A., & Roux, F. E. (2011). Awake craniotomy vs surgery under general anesthesia for resection of supratentorial lesions. Neurosurgery, 68(5), 1192–1199. doi: 10.1227/NEU.0b013e31820c02a3.PubMedGoogle Scholar
  88. Sanai, N., & Berger, M. (2009). Operative techniques and the value of extent of resection. Neurotherapeutics, 6(3), 478–486. doi: 10.1016/j.nurt.2009.04.005.PubMedGoogle Scholar
  89. Sanai, N., Mirzadeh, Z., & Berger, M. (2008). Functional outcome after language mapping for glioma resection. The New England Journal of Medicine, 358(1), 18–27. doi: 10.1056/NEJMoa06781.PubMedGoogle Scholar
  90. Santini, B., Talacchi, A., Squintani, G., Casagrande, F., Capasso, R., & Miceli, G. (2012). Cognitive outcome after awake surgery for tumors in language areas. Journal of Neurooncology, 108(2), 319–326. doi: 10.1007/s11060-012-0817-4.Google Scholar
  91. Satoer, D., Vincent, A., Dirven, C., Smits, M., & Visch-Brink, E. (2011). Spontaneous speech in patients with presumed low-grade gliomas in eloquent areas before and after awake craniotomy. Neuro-Oncology, 13, 121–126. doi: 10.1093/neuonc/nor159.Google Scholar
  92. Satoer, D., Work, J., Visch-Brink, E., Smits, M., Dirven, C., & Vincent, A. (2012). Cognitive functioning early after surgery of gliomas in eloquent areas. Journal of Neurosurgery, 117(5), 831–838. doi: 10.3171/2012.7.JNS12263.PubMedGoogle Scholar
  93. Shapiro, K., & Caramazza, A. (2003). Grammatical processing of nouns and verbs in left frontal cortex? Neuropsychologia, 41(9), 1189–1198. Retrieved from Scholar
  94. Shapiro, K., Shelton, J., & Caramazza, A. (2000). Grammatical class in lexical production and morphological processing: evidence from a case of fluent aphasia. Cognitive Neuropschology, 17(8), 665–682. doi: 10.1080/026432900750038281.Google Scholar
  95. Skirboll, S. S., Ojemann, G. A., Berger, M. S., Lettich, E., & Winn, H. R. (1996). Functional cortex and subcortical white matter located within gliomas. Neurosurgery, 38(4), 678–684. Retrieved from Scholar
  96. Talacchi, A., Avella, D., Denaro, L., Santini, B., Meneghelli, P., Savazzi, S., et al. (2012). Cognitive outcome as part and parcel of clinical outcome in brain tumor surgery. Journal of Neurooncology, 108(2), 327–332. doi: 10.1007/s11060-012-0818-3.Google Scholar
  97. Thompson, C., Lange, K. L., Schneider, S. L., & Shapiro, L. P. (1997). Agrammatic and non-brain damaged subject’s verb and verb argument structure production. Aphasiology, 11(4–5), 473–490. doi: 10.1080/02687039708248485.Google Scholar
  98. Tsapkini, K., Jarema, G., & Kehayia, E. (2002). A morphological processing deficit in verbs but not in nouns: a case study in a highly inflected language. Journal of Neurolinguistics, 15, 265–288. doi: 10.1016/S0911-6044(01)00039-2.Google Scholar
  99. Tsigka, S., Papadelis, C., Braun, C., & Miceli, G. (2014). Distinguishable neural correlates of verbs and nouns: a MEG study on homonyms. Neuropsychologia, 54, 87–97. doi: 10.1016/j.neuropsychologia.2013.12.018.PubMedGoogle Scholar
  100. Tyler, L., Bright, P., Fletcher, P., & Stamatakis, E. A. (2004). Neural processing of nouns and verbs: the role of inflectional morphology. Neuropsychologia, 42(4), 512–523. doi: 10.1016/j.neuropsychologia.2003.10.001.PubMedGoogle Scholar
  101. Vigliocco, G., Vinson, D., Druks, J., Barber, H., & Cappa, S. (2011). Nouns and verbs in the brain: a review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuroscience and Biobehavioral Reviews, 35(3), 407–426. doi: 10.1016/j.neubiorev.2010.04.007.PubMedGoogle Scholar
  102. Whitworth, A., Webster, J., & Howard, D. (2005). Identifying and characterizing impairments: principles and evidence. In A. Whitworth, J. Webster, & D. Howard (Eds.), A cognitive neuropsychological approach to assessment and intervention in aphasia (pp. 11–22). Hove, East Sussex: Taylor & Francis.Google Scholar
  103. Williams, S. E., & Canter, G. J. (1987). Action-naming perfornace in four syndromes of aphasia. Brain and Language, 32(1), 124–136. Retrieved from Scholar
  104. Woods, S. P., Carey, C. L., Tröster, A. I., & Grant, I. (2005). Action (verb) generation in HIV-1 infection. Neuropsychologia, 43(8), 1144–1151. Retrieved from Scholar
  105. Yokohama, S., Miyamoto, T., Riera, J., Kim, J., Akitsuki, Y., Iwata, K., et al. (2006). Cortical mechanisms involved in the processing of verbs: an fMRI study. Journal of Cognitive Neuroscience, 18, 1304–1313. Retrieved from Scholar
  106. Zingeser, L., & Berndt, R. S. (1990). Retrieval of nouns and verbs in agrammatism and anomia. Brain and Language, 39(1), 14–32. doi: 10.1016/0093-934X(90)90002-X.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Center for Neurocognitive Rehabilitation (CeRiN) and Center for Mind/Brain Sciences (CIMeC)University of TrentoRoveretoItaly
  2. 2.International Doctorate for Experimental Approaches to Language and Brain (IDEALAB)University of TrentoTrentoItaly

Personalised recommendations