Advertisement

Neuropsychology Review

, Volume 24, Issue 2, pp 77–87 | Cite as

Contributions of the Insula to Cognition and Emotion

  • Philip Gerard Gasquoine
Review

Abstract

Historically, the insula was considered primary gustatory cortex. Now it is known to play a more comprehensive role in the processing of sensory information, including acting as primary cortex for interoceptive information, including autonomic nervous system mediated changes. As such, it is critical for emotional feeling in accord with the James-Lange theory, a role previously ascribed to the limbic system. Neuroimaged abnormal grey matter volumes or activity levels in the insula have been associated with schizophrenia, eating disorders, anxiety and mood disorders, conduct disorder, autism, addiction, and chronic pain. The significance of these abnormal activity patterns remains theoretical. Neuropsychological studies have linked dominant insula injury with various symptoms of aphasia, but its exact role in language processing remains uncertain as most cases involve lesions that extend into perisylvian language zones. Functional neuroimaging studies have found insula hyper-activations, typically in conjunction with anterior cingulate cortex, for all manner of experimental tasks including those involving perception, intentional action, and consciousness. Such neuroimaged activity is unlikely to be task-specific, but rather reflective of generic changes in autonomic activity in response to salience, homeostatic incongruence, or cognitive challenge.

Keywords

Interoception James-Lange theory of emotion Autonomic nervous system Island of Reil Insular cortex 

References

  1. Ackermann, H., & Riecker, A. (2010). The contribution(s) of the insula to speech production: a review of the clinical and functional imaging literature. Brain Structure and Function, 214, 419–433.PubMedGoogle Scholar
  2. Afif, A., & Mertens, P. (2010). Description of sulcal organization of the insular cortex. Surgical and Radiologic Anatomy, 32, 491–498.PubMedGoogle Scholar
  3. Afif, A., Bouvier, R., Buenerd, A., Trouillas, J., & Mertens, P. (2007). Development of the human fetal insular cortex: study of the gyration from 13 to 28 gestational weeks. Brain Structure and Function, 212, 335–346.PubMedGoogle Scholar
  4. Afif, A., Minotti, L., Kahane, P., & Hoffman, D. (2010). Anatomofunctional organization of the insular cortex: a study using intracerebral electrical stimulation in epileptic patients. Epilepsia, 51, 2305–2315.PubMedGoogle Scholar
  5. Anderson, J. M., Gilmore, R., Roper, S., Crosson, B., Bauer, R. M., Nadeau, S., et al. (1999). Conduction aphasia and the arcuate fasciculus: a re-examination of the Wernicke-Geschwind model. Brain and Language, 70, 1–12.PubMedGoogle Scholar
  6. Apkarian, A. V., Bushnell, M. C., Treede, R.–D., & Zubieta, J. K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9, 463–484.Google Scholar
  7. Appelros, P., Karlsson, G. M., & Hennerdal, S. (2007). Anosognosia versus unilateral neglect. Coexistence and their relations to age, stroke severity, lesion site and cognition. European Journal of Neurology, 14, 54–59.PubMedGoogle Scholar
  8. Ardila, A. (1999). The role of insula in language: an unsettled question. Aphasiology, 13, 79–87.Google Scholar
  9. Assenova, M., Benecib, Z., & Logak, M. (2006). Anosognosia for hemiplegia with pontine infarction. Revue Neurologique, 162, 747–749.PubMedGoogle Scholar
  10. Augustine, J. R. (1985). The insular lobe in primates including humans. Neurological Research, 7, 2–10.PubMedGoogle Scholar
  11. Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 22, 229–244.PubMedGoogle Scholar
  12. Aziz, Q., Schnitzler, A., & Enck, P. (2000). Functional neuroimaging of visceral sensations. Journal of Clinical Neurophysiology, 17, 604–612.PubMedGoogle Scholar
  13. Baier, B., zu Eulenburg, P., Glassi, O., & Dieterich, M. (2011). Lesions of the posterior insular cortex cause dysarthria. European Journal of Neurology, 18, 1429–1431.PubMedGoogle Scholar
  14. Baliki, M. N., Chialvo, D. R., Geha, P. Y., Levy, R. M., Harden, R. N., Parrish, T. B., et al. (2006). Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. Journal of Neuroscience, 26, 12165–12173.PubMedGoogle Scholar
  15. Bamiou, D.-E., Musiek, F. E., & Luxon, L. M. (2003). The insula (Island of Reil) and its role in auditory processing: literature review. Brain Research Reviews, 42, 143–154.PubMedGoogle Scholar
  16. Bamiou, D.-E., Musiek, F. E., Stow, I., Stevens, J., Cipolotti, L., Brown, M. M., et al. (2006). Auditory temporal processing deficits in patients with insular stroke. Neurology, 67, 614–619.PubMedGoogle Scholar
  17. Banzett, R. B., Mulnier, H. E., Murphy, K., Rosen, S. D., Wise, R. S. J., & Adams, L. (2000). Breathlessness in humans activates insular cortex. Neuroreport, 11, 2117–2120.PubMedGoogle Scholar
  18. Berthier, M., Starkstein, S., & Leiguarda, R. (1987). Behavioral effects of damage to the right insula and surrounding regions. Cortex, 23, 673–678.PubMedGoogle Scholar
  19. Berthier, M., Starkstein, S., & Leiguarda, R. (1988). Asymbolia for pain: a sensory-limbic disconnection syndrome. Annuals of Neurology, 24, 41–49.Google Scholar
  20. Binder, D. K., Schaller, K., & Clasmann, H. (2007). The seminal contributions of Johann-Christian Reil to anatomy, physiology, and psychiatry. Neurosurgery, 61, 1091–1096.PubMedGoogle Scholar
  21. Bossaerts, P. (2010). Risk and prediction error signals in anterior insula. Brain Structure and Function, 214, 645–653.PubMedGoogle Scholar
  22. Brass, M., & Haggard, P. (2010). The hidden side of intentional action: the role of the anterior insular cortex. Brain Structure and Function, 214, 603–610.PubMedGoogle Scholar
  23. Broca, P. (1861). Nouvelle observation d’aphemie produite par une lesion de la moite posterieur des deuxieme et troisieme circonvolutions frontales. Bulletins de la Société Anatomique de Paris, 36, 398–407.Google Scholar
  24. Broca, P. (1878). Anatomie compare des circonvolutions cerebrales. Le grand lobe limbique et la scissure limbique dans la serie des mammiferes. Revue D’Anthropologie, 1, 285–498.Google Scholar
  25. Brodmann, K. (1909). Vergleichende Lokalosationslehre der Grosshirnrinde in ihren Prinzipien Dargestellt auf Grund des Zellenbaues. Leipzig: Barth.Google Scholar
  26. Butti, C., & Hof, P. R. (2010). The insular cortex: a comparative perspective. Brain Structure and Function, 214, 477–493.PubMedGoogle Scholar
  27. Calder, A. J., Keane, J., Manes, F., Antoun, N., & Young, A. W. (2000). Impaired recognition and experience of disgust following brain injury. Nature Neuroscience, 3, 1077–1078.PubMedGoogle Scholar
  28. Carleton, A., Accolla, R., & Simon, S. A. (2010). Coding in the mammalian gustatory system. Trends in Neuroscience, 33, 326–334.Google Scholar
  29. Caseras, X., Murphy, K., Mataix-Cols, D., López-Solà, M., Soriano-Mas, C., Ortiz, H., et al. (2013). Anatomical and functional overlap within the insula and anterior cingulate cortex during interoceptive and phobic symptom provocation. Human Brain Mapping, 34, 1220–1229.PubMedGoogle Scholar
  30. Cereda, C., Ghika, J., Maeder, P., & Bogousslavsky, J. (2002). Strokes restricted to the insular cortex. Neurology, 59, 1950–1955.PubMedGoogle Scholar
  31. Chen, S., Li, L., Xu, B., & Liu, J. (2009). Insular cortex involvement in declarative memory deficits in patients with post-traumatic stress disorder. BMC Psychiatry, 9, 39–47.PubMedCentralPubMedGoogle Scholar
  32. Christiansen, H., Boysen, G., Christiansen, A. F., & Johannesen, H. H. (2005). Insular lesions, ECG abnormalities, and outcome in acute stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 269–271.Google Scholar
  33. Clark, T. E. (1896). The comparative anatomy of the insula. Journal of Comparative Neurology, 6, 59–100.Google Scholar
  34. Coltheart, M. (2006a). What has functional neuroimaging told us about the mind (so far)? Cortex, 42, 323–331.PubMedGoogle Scholar
  35. Coltheart, M. (2006b). Perhaps functional neuroimaging has not told us anything about the mind (so far)? Cortex, 42, 422–427.Google Scholar
  36. Craig, A. D. (2005). Forebrain emotional asymmetry: a neuroanatomical basis? Trends in Cognitive Sciences, 9, 566–571.PubMedGoogle Scholar
  37. Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.PubMedGoogle Scholar
  38. Craig, A. D. (2010). The sentient self. Brain Structure and Function, 214, 563–577.PubMedGoogle Scholar
  39. Craig, A. D., Chen, K., Bandy, D., & Reiman, E. M. (2000). Thermosensory activation of insular cortex. Nature Neuroscience, 3, 184–190.PubMedGoogle Scholar
  40. Cramer, S. C. (2008). Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Annuals of Neurology, 63, 272–287.Google Scholar
  41. Critchley, H. D., Wiens, S., Rotshtein, P., Öhman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7, 189–195.PubMedGoogle Scholar
  42. Critchley, H. D., Rotshtein, P., Nagai, Y., O’Doherty, J., Mathias, C. J., & Dolan, R. J. (2005). Activity in the human brain predicting differential heart rate responses to emotional facial expressions. NeuroImage, 24, 751–762.PubMedGoogle Scholar
  43. Dalgleish, T. (2004). The emotional brain. Nature Reviews Neuroscience, 5, 583–589.PubMedGoogle Scholar
  44. Damasio, A. R. (2003). Feeling of emotion and the self. Annuals of the New York Academy of Sciences, 1001, 253–261.Google Scholar
  45. Damasio, H., & Damasio, A. R. (1980). The anatomical basis of conduction aphasia. Brain, 103, 337–350.PubMedGoogle Scholar
  46. Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L. B., Parvizi, J., et al. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3, 1049–1056.PubMedGoogle Scholar
  47. Darwin, C. (1872/1965). The expression of the emotions in man and animals. Chicago: University of Chicago Press.Google Scholar
  48. Decety, J., & Cacioppo, J. (2010). Frontiers in human neuroscience: the golden triangle and beyond. Perspectives on Psychological Science, 5, 767–771.PubMedCentralPubMedGoogle Scholar
  49. Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behavior. Brain, 118, 279–306.PubMedGoogle Scholar
  50. Drevets, W. C. (2000). Neuroimaging studies of mood disorders. Biological Psychiatry, 48, 813–829.PubMedGoogle Scholar
  51. Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159–161.PubMedGoogle Scholar
  52. Dunn, B. D., Stefanovitch, I., Evans, D., Oliver, C., Hawkins, A., & Dalgleish, T. (2010). Can you feel the beat? Interoceptive awareness is an interactive function of anxiety-and depression-specific dimensions. Behavior Research and Therapy, 48, 1133–1138.Google Scholar
  53. Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17, 124–129.PubMedGoogle Scholar
  54. Ersche, K. D., Williams, G. B., Robbins, T. W., & Bullmore, E. T. (2013). Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Current Opinion in Neurobiology, 23, 615–624.PubMedGoogle Scholar
  55. Flynn, F. G., Benson, D. F., & Ardilla, A. (1999). Anatomy of the insula-functional and clinical correlates. Aphasiology, 13, 55–78.Google Scholar
  56. Gasquoine, P. G. (2013). Localization of function in anterior cingulate cortex: from psychosurgery to functional neuroimaging. Neuroscience and Biobehavioral Reviews, 37, 340–348.PubMedGoogle Scholar
  57. Gaznick, N., Tranel, D., McNutt, A., & Behara, A. (2013). Basal ganglia plus insula damage yields stronger disruption of smoking addiction than basal ganglia damage alone. Nicotine & Tobacco Research. doi: 10.1093/ntr/ntt172.
  58. Geschwind, N. (1965). Disconnection syndromes in animals and man. Brain, 88, 237–294, 585–644.PubMedGoogle Scholar
  59. Geschwind, N. (1970). The organization of language and the brain. Science, 170, 940–944.PubMedGoogle Scholar
  60. Gonsalves, B. D., & Cohen, N. J. (2010). Brain imaging, cognitive processes, and brain networks. Perspectives on Psychological Science, 5, 744–752.Google Scholar
  61. Gorno-Tempini, M. L., Dronkers, N. F., Rankin, K. P., Ogar, J. M., Phengrasamy, L., Rosen, H. J., et al. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annuals of Neurology, 55, 335–346.Google Scholar
  62. Griffiths, D., Tadic, S. D., Schaefer, W., & Resnick, N. M. (2007). Cerebral control of the bladder in normal and urge-incontinent women. NeuroImage, 37, 1–7.PubMedCentralPubMedGoogle Scholar
  63. Hennenlotter, A., Schroeder, U., Erhard, P., Haslinger, B., Stahl, R., Weindl, A., et al. (2004). Neural correlates associated with impaired disgust processing in pre-symptomatic Huntington’s disease. Brain, 127, 1446–1453.PubMedGoogle Scholar
  64. Hillis, A. E., Work, M., Barker, P. B., Jacobs, M. A., Breese, E. L., & Maurer, K. (2004). Re-examining the brain regions crucial for orchestrating speech articulation. Brain, 127, 1479–1487.PubMedGoogle Scholar
  65. Hiraga, A., Tanaka, S., & Kamitsukasa, I. (2010). Pure dysarthria due to an insular stroke. Journal of Clinical Neuroscience, 17, 812–813.PubMedGoogle Scholar
  66. House, A., & Hodges, J. R. (1988). Persistent denial of handicap after infarction of the right basal ganglia: a case study. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 112–115.PubMedCentralPubMedGoogle Scholar
  67. Hyman, B. T., & Tranel, D. (1989). Hemianesthesia and aphasia. An anatomical and behavioral study. Archives of Neurology, 46, 816–819.PubMedGoogle Scholar
  68. Ibañez, A., Gleichgerrcht, E., & Manes, F. (2010). Clinical effects of insular damage in humans. Brain Structure and Function, 214, 397–410.PubMedGoogle Scholar
  69. Isnard, J., Guénot, M., Sindou, M., & Mauguière, F. (2004). Clinical manifestations of insular lobe seizures: a stereo-electroencephalographic study. Epilepsia, 45, 1079–1090.PubMedGoogle Scholar
  70. James, W. (1884). What is an emotion? Mind, 9, 188–205.Google Scholar
  71. Karnath, H.–O., & Baier, B. (2010). Right insula for our sense of limb ownership and self-awareness of actions. Brain Structure and Function, 214, 411–417.Google Scholar
  72. Klumpp, H., Post, D., Angstadt, M., Fitzgerald, D. A., & Phan, K. L. (2013). Anterior cingulate cortex and insula response during indirect and direct processing of emotional faces in generalized social anxiety disorder. Biology of Mood & Anxiety Disorders, 3, 7.Google Scholar
  73. Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., & Eickhoff, S. B. (2010). A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Structure and Function, 214, 519–534.PubMedGoogle Scholar
  74. Lang, P. J. (1994). The varieties of emotional experience: a mediation on James-Lange theory. Psychological Review, 101, 211–221.PubMedGoogle Scholar
  75. Lebrun, Y. (1990). Apraxia of speech: a critical review. Journal of Neurolinguistics, 5, 379–406.Google Scholar
  76. LeDoux, J. (1996). Emotional networks and motor control: a fearful view. Progress in Brain Research, 107, 437–446.PubMedGoogle Scholar
  77. Liou, L.-M., Guo, Y.–C., Lai, C.-L., Tsai, C.-L., & Khor, G.–T. (2010). Isolated ataxia after pure left insular cortex infarction. Neurological Sciences, 31, 89–91.Google Scholar
  78. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.PubMedGoogle Scholar
  79. Luria, A. R. (1973). The working brain: An introduction to neuropsychology. Baltimore: Penguin.Google Scholar
  80. Mackey, S., & Paulus, M. (2013). Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants? Neuroscience and Biobehavioral Reviews, 37, 300–316.PubMedCentralPubMedGoogle Scholar
  81. MacLean, P. D. (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalography and Clinical Neurophysiology, 4, 407–418.PubMedGoogle Scholar
  82. Manes, F., Paradiso, S., Springer, J. A., Lamberty, G., & Robinson, R. G. (1999a). Neglect after right insular cortex infarctions. Stroke, 30, 946–948.PubMedGoogle Scholar
  83. Manes, F., Springer, J., Jorge, R., & Robinson, R. G. (1999b). Verbal memory impairment after left insular cortex infarction. Journal of Neurology, Neurosurgery, and Psychiatry, 67, 532–534.PubMedCentralPubMedGoogle Scholar
  84. Marshall, R. S., Lazar, R. M., Mohr, J. P., van Heertum, R. L., & Mast, H. (1996). “Semantic” conduction aphasia from a posterior insular cortex infarction. Journal of Neuroimaging, 6, 189–191.PubMedGoogle Scholar
  85. McGrath, C. L., Kelley, M. E., Holtzheimer, P. E., III, Dunlop, B. W., Craighead, W. E., Franco, A. R., et al. (2013). Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry, 70, E1–E9.Google Scholar
  86. Medford, N., & Critchley, H. D. (2010). Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Structure and Function, 214, 535–549.PubMedCentralPubMedGoogle Scholar
  87. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention, and control: a network model of insula function. Brain Structure and Function, 214, 655–667.PubMedCentralPubMedGoogle Scholar
  88. Mesulum, M. M., & Mufson, E. J. (1982). Insula of the old world monkey. I. Architectonics in the insula-orbito-temporal component of the paralimbic brain. Journal of Comparative Neurology, 212, 1–22.Google Scholar
  89. Mutschler, I., Wieckhorst, B., Kowalevski, S., Derix, J., Wentlandt, J., Schulze-Bonhage, A., et al. (2009). Functional organization of the human anterior insular cortex. Neuroscience Letters, 457, 66–70.PubMedGoogle Scholar
  90. Naqvi, N. H., Rudranf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315, 531–534.Google Scholar
  91. Naqvi, N. H., & Bechara, A. (2008). The hidden island of addiction: the insula. Trends in Neuroscience, 32, 56–67.Google Scholar
  92. Nieuwenhuys, R. (2012). The insular cortex: a review. Progress in Brain Research, 195, 123–163.PubMedGoogle Scholar
  93. Nishida, S., Narumoto, J., Sakai, Y., Matsuoka, T., Nakamae, T., Yamada, K., et al. (2011). Anterior insular volume is larger in patients with obsessive-compulsive disorder. Progress in Neuro-psychopharmacology and Biological Psychiatry, 35, 997–1001.PubMedGoogle Scholar
  94. Nunn, K., Framptom, I., Fuglset, T. S., Törzsök-Sonnevend, M., & Lask, B. (2011). Anorexia nervosa and the insula. Medical Hypotheses, 76, 353–357.PubMedGoogle Scholar
  95. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, USA, 87, 9868–9872.Google Scholar
  96. Oppenheimer, S. (2006). Cerebrogenic cardiac arrhythmias: cortical lateralization and clinical significance. Clinical Autonomic Research, 16, 6–11.PubMedCentralPubMedGoogle Scholar
  97. Oppenheimer, S. M., Gelb, A., Girven, J. P., & Hachinski, V. C. (1992). Cardiovascular effects of human insular cortex stimulation. Neurology, 42, 1727–1732.PubMedGoogle Scholar
  98. Oppenheimer, S. M., Martin, W. M., & Kedem, G. (1996). Left insular cortex lesions perturb cardiac autonomic tone. Clinical Autonomic Research, 6, 131–140.PubMedGoogle Scholar
  99. Oshiro, Y., Quevedo, A. S., McHaffie, J. G., Kraft, R. A., & Coghill, R. C. (2009). Brain mechanisms supporting discrimination of sensory features of pain: a new model. Journal of Neuroscience, 29, 14924–14931.PubMedCentralPubMedGoogle Scholar
  100. Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38, 725–743.Google Scholar
  101. Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60, 383–387.PubMedGoogle Scholar
  102. Paulus, M. P., & Stein, M. B. (2010). Interoception in anxiety and depression. Brain Structure and Function, 214, 451–463.PubMedCentralPubMedGoogle Scholar
  103. Paulus, M. P., Tapert, S. F., & Schuckit, M. A. (2005). Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Archives of General Psychiatry, 62, 761–768.PubMedGoogle Scholar
  104. Pearce, J. M. S. (1994). Von Monakow and diaschisis. Journal of Neurology, Neurosurgery, and Psychiatry, 57, 197.PubMedCentralPubMedGoogle Scholar
  105. Penfield, W., & Faulk, M. E., Jr. (1955). The insula: further observations on its function. Brain, 78, 445–470.PubMedGoogle Scholar
  106. Phan, K. L., Wager, T. D., Taylor, S. F., & Liberzon, I. (2004). Functional neuroimaging studies of human emotions. CNS Spectrums, 9, 258–266.PubMedGoogle Scholar
  107. Phillips, M. L., Young, A. W., Senior, C., Brammer, M., Andrew, C., Calder, A. J., et al. (1997). A specific neural substrate for perceiving facial expressions of disgust. Nature, 389, 495–498.PubMedGoogle Scholar
  108. Pia, L., Neppi-Modona, M., Ricci, R., & Berti, A. (2004). The anatomy of anosognosia for hemiplegia: a meta-analysis. Cortex, 40, 367–377.PubMedGoogle Scholar
  109. Preston, C., Jenkinson, P. M., & Newport, R. (2010). Anosagnosia for hemiplegia as a global deficit in motor awareness: evidence from the non-paralyzed limb. Neuropsychologia, 48, 3443–3450.PubMedGoogle Scholar
  110. Reil, J. C. (1809). Die sylvische Grube. Archiv für die Physiologie, 9, 195–208.Google Scholar
  111. Richardson, J. D., Fillmore, P., Rorden, C., LaPointe, L. L., & Fridriksson, J. (2012). Re-establishing Broca’s initial findings. Brain and Language, 123, 125–130.PubMedGoogle Scholar
  112. Ronchi, R., Algeri, L., Chiapella, L., Spada, M. S., & Vallar, G. (2012). Spatial neglect and perseveration in visuomotor exploration. Neuropsychology, 26, 588–603.PubMedGoogle Scholar
  113. Rose, M. (1928). Die Inselrinde des Menschen und der Tiere. Journal für Psychologie und Neurologie, 37, 470–624.Google Scholar
  114. Schienle, A., Schäfer, A., Hermann, A., & Vaitl, D. (2009). Binge-eating dsorder: reward sensitivity and brain activation to images of food. Biological Psychiatry, 65, 654–661.PubMedGoogle Scholar
  115. Schoenfeld, M. A., Neuer, G., Tempelmann, C., Schübler, K., Noesselt, T., Hopf, J.–M., et al. (2004). Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience, 127, 347–353.Google Scholar
  116. Seeley, W. W. (2010). Anterior insula degeneration in frontotemporal dementia. Brain Structure and Function, 214, 465–475.PubMedCentralPubMedGoogle Scholar
  117. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 2349–2356.PubMedCentralPubMedGoogle Scholar
  118. Selvaraj, S., Arnone, D., Job, D., Stanfield, A., Farrow, T. F. D., Nugent, A. C., et al. (2012). Grey matter differences in bipolar disorder: a meta-analysis of voxel-based morphometry studies. Bipolar Disorder, 14, 135–145.Google Scholar
  119. Sewards, T. V., & Sewards, M. A. (2001). Cortical association areas in the gustatory system. Neuroscience and Biobehavioral Reviews, 25, 395–407.PubMedGoogle Scholar
  120. Shepherd, A. M., Matheson, S. L., Laurens, K. R., Carr, V. J., & Green, M. J. (2012). Systematic meta-analysis of insula volume in schizophrenia. Biological Psychiatry, 72, 775–784.PubMedGoogle Scholar
  121. Small, D. M. (2010). Taste representation in the human insula. Brain Structure and Function, 214, 551–561.PubMedGoogle Scholar
  122. Sommer, I. E., Diederen, K. M., Blom, J. D., Willems, A., Kushan, L., Stotema, K., et al. (2008). Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain, 131, 3169–3177.PubMedGoogle Scholar
  123. Stephani, C., Fernandez-Baca Vaca, G., Maciunas, R., Koubeissi, M., & Lüders, H. O. (2011). Functional neuroanatomy of the insular lobe. Brain Structure and Function, 216, 137–149.PubMedCentralPubMedGoogle Scholar
  124. Sterzer, P., & Kleinschmidt, A. (2010). Anterior insula activations in perceptual paradigms: often observed but barely understood. Brain Structure and Function, 214, 611–622.PubMedGoogle Scholar
  125. Sterzer, P., Stadler, C., Poustka, F., & Kleinschmidt, A. (2007). A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. NeuroImage, 37, 335–342.PubMedGoogle Scholar
  126. Stirling, J., & Elliott, R. (2008). Introducing neuropsychology (2nd ed.). NY: Psychology Press.Google Scholar
  127. Takahashi, T., Yücel, M., Lorenzetti, V., Tanino, R., Whittle, S., Suzuki, M., et al. (2010). Volumetric MRI study of the insular cortex in individuals with current and past major depression. Journal of Affective Disorders, 121, 231–238.PubMedGoogle Scholar
  128. Tataranni, P. A., Gautier, J.–F., Chen, K., Uecker, A., Bandy, D., Salbe, A. D., et al. (1999). Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proceedings of the National Academy of Sciences, USA, 96, 4569–4574.Google Scholar
  129. Uddin, L., & Menon, V. (2009). The anterior insula in autism: under-connected and under-examined. Neuroscience and Biobehavioral Reviews, 33, 1198–1203.PubMedCentralPubMedGoogle Scholar
  130. Von Bechterew, W. (1899). Untersuchungsevgebrisse betreffend die Erregbarkeit des hinteren Abschrittes des Hirnlappens. Archiv für Anatomie und Physiologie, Leipzig, 500–503.Google Scholar
  131. von Monakow, C. (1914). Die lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde. Wiesbaden: J. F. Bergmann.Google Scholar
  132. Walter, U., Kolbaske, S., Patejdl, R., Steinhagen, V., Abu-Mugheisib, M., Grossman, A., et al. (2013). Insular stroke is associated with acute sympathetic hyperactivation and immunodepression. European Journal of Neurology, 20, 153–159.PubMedGoogle Scholar
  133. Wernicke, C. (1874). Der aphasiche Symptomenkomplex: Eine Psychologische Studie auf Anatomischer Basis. Breslau: Cohn & Weigart.Google Scholar
  134. Wylie, K. P., & Tregellas, J. R. (2010). The role of the insula in schizophrenia. Schizophrenia Research, 123, 93–104.PubMedCentralPubMedGoogle Scholar
  135. Yakovlev, P. I. (1959). Pathoarchitectonic studies of cerebral malformations. III. Arrhinencephalies (Holotelencephalies). Journal of Neuropathology and Experimental Neurology, 18, 22–55.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of Texas—Pan AmericanEdinburgUSA

Personalised recommendations