Neuropsychology Review

, Volume 23, Issue 3, pp 234–256 | Cite as

Apraxia and Alzheimer’s Disease: Review and Perspectives

  • Mathieu Lesourd
  • Didier Le Gall
  • Josselin Baumard
  • Bernard Croisile
  • Christophe Jarry
  • François Osiurak


Apraxia is one of the cognitive deficits that characterizes Alzheimer’s disease. Despite its prevalence and relevance to diagnosing Alzheimer’s disease, this topic has received little attention and is without comprehensive review. The review herein is aimed to fill this gap by first presenting an overview of the impairment caused in different clinical situations: pantomime of tool use, single tool use, real tool use, mechanical problem solving, function and manipulation knowledge tasks, and symbolic/meaningless gestures. On the basis of these results, we then propose alternative interpretations regarding the nature of the underlying mechanisms impaired by the disease. Also presented are principal methodological issues precluding firm conclusions from being drawn.


Alzheimer’s disease Limb apraxia Pantomime Imitation Tool use Transitive gesture Intransitive gesture 



This work was supported by grants from ANR (Agence Nationale pour la Recherche; Project Démences et Utilisation d’Outils/Dementia and Tool Use, N°ANR 2011 MALZ 006 03) to François Osiurak and Didier Le Gall, Région Pays de la Loire (Project Outils et Vie Quotidienne/Tool Use and Daily Life Activities, 2012-09689 OVQ) to Didier Le Gall, and was performed within the framework of the LABEX CORTEX (ANR-11-LABX-0042) of Université de Lyon (François Osiurak), within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).


  1. *Adlam, A.L.R., Bozeat, S., Arnold, R., Watson, P., Hodges, J.R. (2006). Semantic knowledge in mild cognitive impairment and mild Alzheimer’s disease. Cortex, 42, 675–684.Google Scholar
  2. Bartolo, A., Daumüller, M., Della Sala, S., & Goldenberg, G. (2007). Relationship between object-related gestures and the fractionated object knowledge system. Behavioural Neurology, 18, 143–147.PubMedGoogle Scholar
  3. ♦Benke, T. (1993). Two forms of apraxia in Alzheimer’s disease. Cortex, 29, 715–725.Google Scholar
  4. Benson, D. F., Davis, R. J., & Snyder, B. D. (1988). Posterior cortical atrophy. Archives of Neurology, 45, 789–793.PubMedCrossRefGoogle Scholar
  5. *Blondel, A., Desgranges, B., de la Sayette, V., Schaeffer, S., Benali, K., Lechevalier, et al. (2001). Disorders in intentional gestural organization in Alzheimer’s disease: combined or selective impairment of the conceptual and production systems ? European Journal of Neurology, 8, 629–641.Google Scholar
  6. Bozeat, S., Lambon Ralph, M. A., Patterson, K., & Hodges, J. R. (2002a). When objects lose their meaning: What happens to their use? Cognitive, Affective and Behavioral Neurosciences, 2, 236–251.CrossRefGoogle Scholar
  7. Bozeat, S., Ralph, M. A., Patterson, K., & Hodges, J. R. (2002b). The influence of personal familiarity and context on object use in semantic dementia. Neurocase, 8, 127–134.PubMedCrossRefGoogle Scholar
  8. Buxbaum, L. J. (2001). Ideomotor apraxia: a call to action. Neurocase, 7, 445–448.PubMedCrossRefGoogle Scholar
  9. Buxbaum, L. J., Giovannetti, T., & Libon, D. (2000a). The role of the dynamic body schema in praxis: Evidence from primary progressive apraxia. Brain and Cognition, 44, 166–191.PubMedCrossRefGoogle Scholar
  10. Buxbaum, L. J., Kyle, K. M., Grossman, M., & Coslett, H. B. (2007). Left inferior parietal representations for skilled hand-object interactions: evidence from stroke and corticobasal degeneration. Cortex, 43, 411–423.PubMedCrossRefGoogle Scholar
  11. Buxbaum, L. J., Kyle, K. M., & Menon, R. (2005). On beyond mirror neurons: internal representations subserving imitation and recognition of skilled object-related actions in humans. Cognitive Brain Research, 25, 226–239.PubMedCrossRefGoogle Scholar
  12. Buxbaum, L. J., & Saffran, E. M. (2002). Knowledge of object manipulation and object function: dissociations in apraxic and nonapraxic subjects. Brain and Language, 82, 179–199.PubMedCrossRefGoogle Scholar
  13. Buxbaum, L. J., Schwartz, M. F., & Carew, T. G. (1997). The role of memory in object use. Cognitive Neuropsychology, 14, 219–254.CrossRefGoogle Scholar
  14. Buxbaum, L. J., Veramonti, T., & Schwartz, M. F. (2000b). Function and manipulation tool knowledge in apraxia: knowing “what for” but not “how”. Neurocase, 6, 83–97.Google Scholar
  15. Chainay, H., Louarn, C., & Humphreys, G. W. (2006). Ideational action impairments in Alzheimer’s disease. Brain and Cognition, 62, 198–205.PubMedCrossRefGoogle Scholar
  16. *Crutch, S.J., Rossor, M.N., Warrington, E.K. (2007). The quantitative assessment of apraxic deficits in Alzheimer’s disease. Cortex, 43, 976–986.Google Scholar
  17. Cubelli, R., & Della Sala, S. (1996). The legacy of automatic/voluntary dissociation in apraxia. Neurocase, 2, 449–454.CrossRefGoogle Scholar
  18. Cubelli, R., Marchetti, C., Boscolo, G., & Della Sala, S. (2000). Cognition in action: testing a model of limb apraxia. Brain and Cognition, 44, 144–165.PubMedCrossRefGoogle Scholar
  19. °Della Sala, S., Lucchelli, F., & Spinnler, H. (1987). Ideomotor apraxia in patients with dementia of Alzheimer type. Journal of Neurology, 234, 91–93.Google Scholar
  20. De Renzi, E. (1989). Apraxia. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (pp. 245–263). Amsterdam: Elsevier Science Publishers.Google Scholar
  21. De Renzi, E., Faglioni, P., & Sorgato, P. (1982). Modality-specific and supramodal mechanisms of apraxia. Brain, 101, 301–312.CrossRefGoogle Scholar
  22. De Renzi, E., & Lucchelli, F. (1988). Ideational apraxia. Brain, 111, 1173–1185.PubMedCrossRefGoogle Scholar
  23. De Vignemont, F. (2009). Body schema and body image. Neuropsychologia, 48, 669–680.PubMedCrossRefGoogle Scholar
  24. Derouesné, C., Lagha-Pierucci, S., Thibault, S., Baudoin-Madec, V., & Lacomblez, L. (2000). Neuropsychologia, 38, 1760–1769.PubMedCrossRefGoogle Scholar
  25. Donkervoort, M., Dekker, J., & Deelman, B. G. (2002). Sensitivity of different ADL measures to apraxia and motor impairments. Clinical Rehabilitation, 16, 299–305.PubMedCrossRefGoogle Scholar
  26. Dubois, B., Feldman, H. H., Jacova, C., Cummings, J. L., DeKosky, S. T., Barbeger-Gateau, P., et al. (2010). Revising the definition of Alzheimer’s disease: a new lexicon. The Lancet Neurology, 9, 1118–1127.CrossRefGoogle Scholar
  27. Dubois, B., Feldman, H. H., Jacova, C., DeKosky, S. T., Barbeger-Gateau, P., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. The Lancet Neurology, 6, 734–746.CrossRefGoogle Scholar
  28. *Dumont, C., Ska, B., & Joanette, Y. (2000). Conceptual apraxia and semantic memory deficit in Alzheimer’s disease: two sides of the same coin ? Journal of the International Neuropsychological Society, 6, 693–703.Google Scholar
  29. ♦Edwards, D.F., Deuel, R.K., Baum, C.M., Morris, J.C. (1991). A quantitative analysis of apraxia in senile dementia of the Alzheimer type: stage-related differences in prevalence and type. Dementia, 2, 142–149.Google Scholar
  30. Forde, E. M. E., & Humphreys, G. W. (2000). The role of semantic knowledge and working memory in everyday tasks. Brain and Cognition, 44, 214–252.PubMedCrossRefGoogle Scholar
  31. *Foundas, A.L., Macauley, B.L., Raymer, A.M., Maher, L.M., Rothi, L.J.G., Heilman, K. M. (1999). Ideomotor apraxia in Alzheimer’s disease and left hemispheric stroke: limb transitive and intransitive movements. Neuropsychiatry, Neuropsychology, and behavioral Neurology, 12, 161–166.Google Scholar
  32. Geschwind, N. (1965). Disconnection syndrome in animal and man. Brain, 88, 585–644.PubMedCrossRefGoogle Scholar
  33. Giannakopoulos, P., Duc, M., Gold, G., Hof, P. R., Michel, J.-P., & Bouras, C. (1998). Pathologic correlates of apraxia in Alzheimer disease. Archive of Neurology, 55, 689–695.CrossRefGoogle Scholar
  34. Giovannetti, T., Schmidt, K. S., Gallo, J. L., Sestito, N., & Libon, D. J. (2006). Everyday action in dementia: evidence for differential deficits in Alzheimer’s disease versus subcortical vascular dementia. Journal of the International Neuropsychological Society, 12, 45–53.PubMedGoogle Scholar
  35. °Giovannetti, T., Sestito, N., Libon, D.J., Schmidt, K.S., Gallo, J.L., Gambino, et al. (2006b). The influence of personal familiarity on object naming, knowledge, and use in dementia. Archives of Clinical Neuropsychology, 21, 607–614.Google Scholar
  36. Goldenberg, G. (1995). Imitating gestures and manipulating a manikin – The representation of the human body in ideomotor apraxia. Neuropsychologia, 33, 63–72.PubMedCrossRefGoogle Scholar
  37. Goldenberg, G. (1999). Matching and imitation of hand and finger postures in patients with damage in the left or right hemispheres. Neuropsychologia, 37, 559–566.PubMedCrossRefGoogle Scholar
  38. Goldenberg, G. (2003). Apraxia and beyond: life and work of Hugo Liepmann. Cortex, 39, 509–524.PubMedCrossRefGoogle Scholar
  39. Goldenberg, G. (2009). Apraxia and the parietal lobes. Neuropsychologia, 47, 1449–1559.PubMedCrossRefGoogle Scholar
  40. Goldenberg, G., & Hagmann, S. (1997). The meaning of meaningless gestures: a study of visuo-imitative apraxia. Neuropsychologia, 35, 333–341.PubMedCrossRefGoogle Scholar
  41. Goldenberg, G., & Hagmann, S. (1998). Tool use and mechanical problem solving in apraxia. Neuropsychologia, 36, 581–589.PubMedCrossRefGoogle Scholar
  42. Goldenberg, G., Hentze, S., & Hermsdörfer, J. (2004). The effect of tactile feedback on pantomime of tool use in apraxia. Neurology, 63, 1863–1867.PubMedCrossRefGoogle Scholar
  43. Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132, 1645–1655.PubMedCrossRefGoogle Scholar
  44. Graham, N. L., Zeman, A., Young, A. W., Patterson, K., & Hodges, J. R. (1999). Dyspraxia in a patient with corticobasal degeneration: the role of visual and tactile inputs to action. Journal of Neurology, Neurosurgery, and Psychiatry, 67, 334–344.PubMedCrossRefGoogle Scholar
  45. Green, R. C., Goldstein, F. C., Mira, S. S., Alazraki, N. P., Baxt, J. L., & Bakay, R. A. (1995). Slowly progressive apraxia in Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 59, 312–315.PubMedCrossRefGoogle Scholar
  46. Harley, T. A. (2004). Does cognitive neuropsychology have a future ? Cognitive Neuropsychology, 21, 3–16.PubMedCrossRefGoogle Scholar
  47. Hartmann, K., Goldenberg, G., Daumüller, M., & Hermsdörfer, J. (2005). It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices. Neuropsychologia, 43, 625–627.PubMedCrossRefGoogle Scholar
  48. Heilman, K. M., Rothi, L. J. G., Mack, L., Feinberg, T., & Watson, R. T. (1986). Apraxia after superior parietal lesions. Cortex, 32, 141–150.CrossRefGoogle Scholar
  49. Heilman, K. M., Rothi, L. J., & Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 22, 342–346.CrossRefGoogle Scholar
  50. Heilman, K. M., & Watson, R. T. (2008). The disconnection apraxias. Cortex, 44, 975–982.PubMedCrossRefGoogle Scholar
  51. Hermsdörfer, J., Hentze, S., & Goldenberg, G. (2006). Spatial and kinematic features of apraxic movement depend on the mode of execution. Neuropsychologia, 44, 1642–1652.PubMedCrossRefGoogle Scholar
  52. Hodges, J. R., Bozeat, S., Lambon Ralph, M. A., Patterson, K., & Spatt, J. (2000). The role of knowledge in object use: evidence from semantic dementia. Brain, 123, 1913–1925.PubMedCrossRefGoogle Scholar
  53. Hodges, J. R., Spatt, J., & Patterson, K. (1999). What” and “how”: evidence for the dissociation of object knowledge and mechanical problem-solving skills in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 96, 9444–9448.PubMedCrossRefGoogle Scholar
  54. °Jacobs, D.H., Adair, J.C., Williamson, D.J.G., Na, D.L., Gold, M., Foundas, A.L., et al. (1999). Apraxia and motor-skill acquisition in Alzheimer’s disease are dissociable. Neuropsychologia, 37, 875–880.Google Scholar
  55. Jarry, C., Osiurak, F., Delafuys, D., Chauviré, V., Etcharry-Bouyx, F., Le Gall, D. (2013). Apraxia of tool use: more evidence for the technical reasoning hypothesis. Cortex. doi: 10.1016/j.cortex.2013.02.011.
  56. *Kato, M., Meguro, K., Sato, M., Shimada, Y., Yamazaki, H., Saito, H., et al. (2000). Ideomotor apraxia in patients with Alzheimer’s disease: why do they use their body parts as objects? Neuropsychiatry, Neuropsychology, and behavioral Neurology, 14, 45–52.Google Scholar
  57. Kirk, A., & Kertesz, A. (1991). On drawing impairment in Alzheimer’s disease. Archives of Neurology, 48, 73–77.PubMedCrossRefGoogle Scholar
  58. Lauro-Grotto, R., Piccini, C., & Shallice, T. (1997). Modality-specific operations in semantic dementia. Cortex, 33, 593–622.PubMedCrossRefGoogle Scholar
  59. °Lucchelli, F., Lopez, O.L., Faglioni, P., Boller, F. (1993). Ideomotor and ideational apraxia in Alzheimer’s disease. International Journal of Geriatric Psychiatry, 8, 413–417.Google Scholar
  60. Luria, A. R., & Tsvetkova, L. S. (1964). The programming of constructive activity in local brain injuries. Neuropsychologia, 2, 95–107.CrossRefGoogle Scholar
  61. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease. Neurology, 34, 939–944.PubMedCrossRefGoogle Scholar
  62. Mesulam, M. M. (2003). Primary progressive aphasia – A language based dementia. The New England Journal of Medicine, 349, 1535–1542.PubMedCrossRefGoogle Scholar
  63. •Moreaud, O., Charnallet, A., Pellat, J. (1998). Identification without manipulation: a study of the relations between object use and semantic memory. Neuropsychologia, 36, 1295–1301.Google Scholar
  64. *Mozaz, M., Garaigorbodil, M., Rothi, L. J. G., Anderson, J., Crucian, G. P., Heilman, K. M. (2006). Posture recognition in Alzheimer’s disease. Brain and Cognition, 62, 241–245.Google Scholar
  65. •Negri, G.A., Lunardelli, A., Reverberi, C., Gigli, G.L., Rumiati, R.I. (2007). Degraded semantic knowledge and accurate object use. Cortex, 43, 376–388.Google Scholar
  66. Ochipa, C., Rothi, L. J. G., & Heilman, K. M. (1989). Ideational apraxia: a deficit in tool selection and use. Annals of Neurology, 25, 190–193.Google Scholar
  67. *Ochipa, C., Rothi, L.J. G., Heilman, K.M. (1992). Conceptual apraxia in Alzheimer’s disease. Brain, 115, 1061–1071.Google Scholar
  68. *Okazaki, M., Kasai, M., Meguro, K., Yamaguchi, S., Ishii, H. (2009). Disturbances in everyday life activities and sequence disabilities in tool use for Alzheimer disease and vascular dementia. Cognitive and Behavioral Neurology, 22, 215–221.Google Scholar
  69. Osiurak, F., Aubin, G., Allain, P., Jarry, C., Richard, I., & Le Gall, D. (2008). Object usage and object utilization. A single-case study. Neurocase, 14, 169–183.PubMedCrossRefGoogle Scholar
  70. Osiurak, F., Jarry, C., Allain, P., Aubin, G., Etcharry-Bouyx, F., Richard, I., et al. (2007). Des troubles praxiques aux troubles techniques. Une étude de deux cas. Revue de Neuropsychologie, 17, 231–259.Google Scholar
  71. Osiurak, F., Jarry, C., Allain, P., Aubin, G., Etcharry-Bouyx, F., Richard, I., et al. (2009). Unusual use of objects after unilateral brain damage. The technical reasoning model. Cortex, 45, 769–783.PubMedCrossRefGoogle Scholar
  72. Osiurak, F., Jarry, C., & Le Gall, D. (2010). Grasping the affordances, understanding the reasoning. Toward a dialectical theory of human tool use. Psychological Review, 117, 517–540.PubMedCrossRefGoogle Scholar
  73. Osiurak, F., Jarry, C., & Le Gall, D. (2011). Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use. Neuropsychologia, 49, 299–312.PubMedCrossRefGoogle Scholar
  74. Osiurak, F., Jarry, C., Lesourd, M., Baumard, J., Le Gall, D. (2013). Mechanical problem-solving strategies in left-brain damaged patients and apraxia of tool use. Neuropsychologia, 51, 1964–1972.Google Scholar
  75. Osiurak, F., & Le Gall, D. (2012). Apraxia: clinical types, theoretical models, and evaluation. In T. Heinbockel (Ed.), Neuroscience (pp. 69–92). InTech.Google Scholar
  76. ♦Parakh, R., Roy, E., Koo, E., Black, S. (2004). Pantomime and imitation of limb gestures in relation to the severity of Alzheimer’s disease. Brain and Cognition, 55, 272–274.Google Scholar
  77. *Rapcsak, S. Z., Croswell, S. C., Rubens, A. B. (1989). Apraxia in Alzheimer’s disease. Neurology, 39, 664–668.Google Scholar
  78. Rothi, L. J. G., Ochipa, C., & Heilman, K. M. (1991). A cognitive neuropsychological model of limb praxis. Cognitive Neuropsychology, 8, 443–458.CrossRefGoogle Scholar
  79. *Rousseaux, M., Rénier, J., Anicet, L., Pasquier, F., Mackowiak-Cordoliani, M.A. (2012). Gesture comprehension, knowledge and production in Alzheimer’s disease. European Journal of Neurology, 19, 1037–1044.Google Scholar
  80. Roy, E. A., & Square, P. A. (1985). Common considerations in the study of limb, verbal and oral apraxia. In E. A. Roy (Ed.), Neuropsychological studies of apraxia and related disorders (pp. 111–161). Amsterdam: Elsevier.Google Scholar
  81. Salter, J. E., Roy, E. A., Black, S. E., Joshi, A., & Almeida, Q. (2004). Gestural imitation and limb apraxia in corticobasal degeneration. Brain and Cognition, 55, 400–402.PubMedCrossRefGoogle Scholar
  82. *Schwartz, R.L., Adair, J.C., Raymer, A.M., Williamson, D.J.G., Crosson, B., Rothi, L.J.G., et al. (2000). Conceptual apraxia in probable Alzheimer’s disease as demonstrated by the Florida Action Recall Test. Journal of the International Neuropsychological Society, 6, 265–270.Google Scholar
  83. Silveri, M. C., & Ciccarelli, N. (2009). Semantic memory in object use. Neuropsychologia, 47, 2634–2641.PubMedCrossRefGoogle Scholar
  84. Sirigu, A., Duhamel, J.-R., & Poncet, M. (1991). The role of sensorimotor experience in object recognition. Brain, 114, 2555–2573.PubMedCrossRefGoogle Scholar
  85. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280–292.CrossRefGoogle Scholar
  86. Stopford, C. L., Snowden, J. S., Thompson, J. C., & Neary, D. (2008). Variability in cognitive presentation of Alzheimer’s disease. Cortex, 44, 185–195.PubMedCrossRefGoogle Scholar
  87. Tessari, A., Canessa, N., Ukmar, M., & Rumiati, R. I. (2007). Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain, 130, 1111–1126.PubMedCrossRefGoogle Scholar
  88. *Travniczek-Marterer, A., Danielczyk, W., Simanyi, M., Fischer, P. (1993). Ideomotor apraxia in Alzheimer’s disease. Acta Neurologica Scandinavica, 88, 1–4.Google Scholar
  89. Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–403). London: Academic.Google Scholar
  90. Wada, Y., Nakagawa, Y., Nishikawa, T., Aso, N., Inokowa, M., Kashiwagi, A., et al. (1999). Role of somatosensory feedback from tools in realizing movements by patients with ideomotor apraxia. European Neurology, 41, 73–78.PubMedCrossRefGoogle Scholar
  91. Walther, S., Vanbellingen, T., Muri, R., Strik, W., & Bohlalter, S. (2013). Impaired pantomime in schizophrenia: association with frontal lobe function. Cortex, 49, 520–527.Google Scholar
  92. Warren, M. (1981). Relationship of constructional apraxia and body scheme disorders to dressing performance in adult CVA. The American Journal of Occupational Therapy, 7, 431–437.CrossRefGoogle Scholar
  93. *Willis, L., Behrens, M., Mack, W., Chui, H. (1998). Ideomotor apraxia in early Alzheimer’s disease: time and accuracy measures. Brain and Cognition, 38, 220–233.Google Scholar
  94. Yamaguchi, H., Maki, Y., & Yamagami, T. (2010). Yamaguchi fox-pigeon imitation test: a rapid test for dementia. Dementia and Geriatric Cognitive Disorders, 29, 254–258.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mathieu Lesourd
    • 1
    • 2
  • Didier Le Gall
    • 3
    • 4
  • Josselin Baumard
    • 3
    • 4
  • Bernard Croisile
    • 2
  • Christophe Jarry
    • 3
    • 4
  • François Osiurak
    • 1
  1. 1.Laboratoire d’Étude des Mécanismes Cognitifs (EA 3082), Institut de PsychologieUniversité Lyon 2Bron CedexFrance
  2. 2.Service de NeuropsychologieHôpital Neurologique Pierre WertheimerBronFrance
  3. 3.Laboratoire de Psychologie des Pays de la Loire (EA 4638)Université d’AngersAngersFrance
  4. 4.Unité de Neuropsychologie, Département de NeurologieCentre Hospitalier Universitaire d’AngersAngersFrance

Personalised recommendations