Neuropsychology Review

, Volume 22, Issue 4, pp 334–344 | Cite as

Assessment of Intelligence in the Preschool Period

  • Ida Sue Baron
  • Katherine Ann Leonberger


Intelligence testing has a long and revered history in psychological measurement in childhood. Yet, the years between infancy and early childhood have been understudied with respect to emergent intellectual and cognitive functioning. Factor analytic models of intelligence that have demonstrated applicability when testing older children and adults often appear inadequate in the preschool period. As more is learned about brain development in typically developing children during these crucial years the distinctive relationships between neural system development and intellectual functioning are being revealed more completely. The aim of this paper was to provide a brief historical background as a foundation for discussion of intelligence testing, review what is known about the dynamic course of brain development during the preschool years, acknowledge limitations specific to intelligence testing in young children, and provide support for maintaining a comprehensive neuropsychological perspective that considers the wider range of variables that influence intellectual functioning in the preschool period.


Cognition Brain development Fluid and crystallized intelligence Socioenvironmental variables Genetic influences Heritability Gender differences 


  1. Amso, D., & Casey, B. J. (2006). Beyond what develops when: neuroimaging may inform how cognition changes with development. Current Directions in Psychological Science, 15, 24–29.CrossRefGoogle Scholar
  2. Anderson, V., Catroppa, C., Morse, S., Haritou, F., & Rosenfeld, J. V. (2009). Intellectual outcome from preschool traumatic brain injury: a 5-year prospective, longitudinal study. Pediatrics, 124, e1064–e1071.PubMedCrossRefGoogle Scholar
  3. Andersson, H. W., Sonnander, K., & Sommerfelt, K. (1998). Gender and its contribution to the prediction of cognitive abilities at 5 years. Scandinavian Journal of Psychology, 39, 267–274.PubMedCrossRefGoogle Scholar
  4. Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., …Yuh, W. T. (1993). Intelligence and brain structure in normal individuals. The American Journal of Psychiatry, 150, 130–134.Google Scholar
  5. Arend, I., Colom, R., Botella, J., Contreras, M. J., Rubio, V., & Santacreu, J. (2003). Quantifying cognitive complexity: evidence from a reasoning task. Personality and Individual Differences, 35, 659–669.CrossRefGoogle Scholar
  6. Ballantyne, A. O., Spilkin, A. M., Hesselink, J., & Trauner, D. A. (2008). Plasticity in the developing brain: intellectual, language and academic functions in children with ischaemic perinatal stroke. Brain, 131(Pt 11), 2975–2985.PubMedCrossRefGoogle Scholar
  7. Baron, I. S. (2004). Neuropsychological evaluation of the child. New York: Oxford University Press.Google Scholar
  8. Bartels, M., Rietveld, M. J., Van Baal, G. C., & Boomsma, D. I. (2002). Genetic and environmental influences on the development of intelligence. Behavior Genetics, 32, 237–249.PubMedCrossRefGoogle Scholar
  9. Bjorklund, D. F. (1999). What individual differences can teach us about developmental function and vice versa. In F. E. W. W. Schneider (Ed.), Individual development from 3 to 12: The munich longitudinal study on the genesis of individual competencies (LOGIC) (pp. 29–37). Cambridge: Cambridge University Press.Google Scholar
  10. Bjorklund, D. F. (2005). Children’s thinking: Cognitive development and individual differences. Belmont: Thomson Wadsworth.Google Scholar
  11. Blair, C. (2007). Inherent limits on the identification of a neural basis for general intelligence. The Behavioral and Brain Sciences, 30, 154–155.CrossRefGoogle Scholar
  12. Bornstein, M. H. (1985). How infant and mother jointly contribute to developing cognitive competence in the child. Proceedings of the National Academy of Sciences of the United States of America, 82, 7470–7473.PubMedCrossRefGoogle Scholar
  13. Bouchard, T. J., Jr., & McGue, M. (1981). Familial studies of intelligence: a review. Science, 212, 1055–1059.PubMedCrossRefGoogle Scholar
  14. Cantlon, J. F., Pinel, P., Dehaene, S., & Pelphrey, K. A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cerebral Cortex, 21, 191–199.PubMedCrossRefGoogle Scholar
  15. Carroll, J. B. (1993). Human cognitive abilites: A survey of factor-analytic studies. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Cattell, R. B. (1963). Theory of fluid and crystallized intelligence. Journal of Educational Psychology, 54, 1–22.CrossRefGoogle Scholar
  17. Ceci, S. J. (1990). On intelligence…more or less: A bioecological treatiseon intellectual development. Englewood Cliffs: Prentice Hall.Google Scholar
  18. Choi, Y. Y., Shamosh, N. A., Cho, S. H., DeYoung, C. G., Lee, M. J., Lee, J. M., & Lee, K. H. (2008). Multiple bases of human intelligence revealed by cortical thickness and neural activation. The Journal of Neuroscience, 28, 10323–10329.PubMedCrossRefGoogle Scholar
  19. Colom, R. (2007). Intelligence? What intelligence? The Behavioral and Brain Sciences, 30, 155–156.CrossRefGoogle Scholar
  20. Colom, R., Abad, F. J., Garcia, L. F., & Juan-Espinosa, M. (2002). Education, Wechsler’s full scale IQ, and g. Intelligence, 30, 449-462.Google Scholar
  21. Colom, R., Jung, R. E., & Haier, R. J. (2006). Distributed brain sites for the g-factor of intelligence. NeuroImage, 31, 1359–1365.PubMedCrossRefGoogle Scholar
  22. Das, J. P., Kirby, J., & Jarman, R. F. (1975). Simultaneous and successive syntheses. Psychological Bulletin, 82, 87–103.CrossRefGoogle Scholar
  23. Davis, O. S., Haworth, C. M., & Plomin, R. (2009). Dramatic increase in heritability of cognitive development from early to middle childhood: an 8-year longitudinal study of 8,700 pairs of twins. Psychological Science, 20, 1301–1308.PubMedCrossRefGoogle Scholar
  24. Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews. Neuroscience, 11, 201–211.PubMedGoogle Scholar
  25. Doyle, L. W., Davis, P. G., Schmidt, B., & Anderson, P. J. (2012). Cognitive outcome at 24 months is more predictive than at 18 months for IQ at 8–9 years in extremely low birth weight children. Early Human Development, 88, 95–98.PubMedCrossRefGoogle Scholar
  26. Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., & Emslie, H. (2000). A neural basis for general intelligence. Science, 289, 457–460.PubMedCrossRefGoogle Scholar
  27. Elliott, C. D. (2007). Differential ability scales-II. San Antonio: Harcourt Assessment.Google Scholar
  28. Flashman, L. A., Andreason, N. C., Flaum, M., & Swayze, V. W. (1997). Intelligence and regional brain volume in normal controls. Intelligence, 25, 149–160.CrossRefGoogle Scholar
  29. Galsworthy, M. J., Dionne, G., Dale, P. S., & Plomin, R. (2000). Sex differences in early verbal and non-verbal cognitive development. Developmental Science, 3, 206–215.CrossRefGoogle Scholar
  30. Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: Macmillan and Co.CrossRefGoogle Scholar
  31. Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
  32. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2, 861–863.PubMedCrossRefGoogle Scholar
  33. Giedd, J. N., Stockman, M., Weddle, C., Liverpool, M., Alexander-Bloch, A., Wallace, G. L., & Lenroot, R. K. (2010). Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation. Neuropsychology Review, 20, 349–361.PubMedCrossRefGoogle Scholar
  34. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6, 316–322.PubMedCrossRefGoogle Scholar
  35. Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., & Morrow, M. (2005). Poor predictive validity of the bayley scales of infant development for cognitive function of extremely low birth weight children at school age. Pediatrics, 116, 333–341.PubMedCrossRefGoogle Scholar
  36. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23, 425–433.PubMedCrossRefGoogle Scholar
  37. Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57, 253–270.PubMedCrossRefGoogle Scholar
  38. Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex- developmental changes and effects of aging. Brain Research, 163, 195–205.PubMedCrossRefGoogle Scholar
  39. Jensen, A. R. (1998). The g factor: The science of mental ability. Westport: Praeger.Google Scholar
  40. Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews. Neuroscience, 2, 475–483.PubMedCrossRefGoogle Scholar
  41. Johnson, W., & Bouchard, T. J. (2005). The structure of human intelligence: it is verbal, perceptual, and image rotation (VPR), not fluid and crystallized. Intelligence, 33, 393–416.CrossRefGoogle Scholar
  42. Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. The Behavioral and Brain Sciences, 30, 135–154.PubMedCrossRefGoogle Scholar
  43. Kadosh, R. C., Walsh, V., & Henik, A. (2007). Selecting between intelligent options. The Behavioral and Brain Sciences, 30, 155.CrossRefGoogle Scholar
  44. Karama, S., Ad-Dab’bagh, Y., Haier, R. J., Deary, I. J., Lyttelton, O. C., Lepage, C., Evans, A. C., & Brain Development Cooperative Group. (2009). Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year olds. Intelligence, 37, 145–155.CrossRefGoogle Scholar
  45. Karrass, J., & Braungart-Rieker, J. M. (2004). Infant negative emotionality and attachment: implications for preschool intelligence. International Journal of Behavioral Development, 28, 221–229.CrossRefGoogle Scholar
  46. Kawakubo, Y., Kono, T., Takizawa, R., Kuwabara, H., Ishii-Takahashi, A., & Kasai, K. (2011). Developmental changes of prefrontal activation in humans: a near-infrared spectroscopy study of preschool children and adults. PLoS One, 6, e25944.PubMedCrossRefGoogle Scholar
  47. Kuwajima, M., & Sawaguchi, T. (2010). Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography. Experimental Brain Research, 206, 381–397.CrossRefGoogle Scholar
  48. Lebel, C., & Beaulieu, C. (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. The Journal of Neuroscience, 31, 10937–10947.PubMedCrossRefGoogle Scholar
  49. Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., & Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 1065–1073.PubMedCrossRefGoogle Scholar
  50. Lenroot, R. K., Schmitt, J. E., Ordaz, S. J., Wallace, G. L., Neale, M. C., Lerch, J. P., & Giedd, J. N. (2009). Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Human Brain Mapping, 30, 163–174.PubMedCrossRefGoogle Scholar
  51. Lubinski, D. (2004). General intelligence’, objectively determined and measured. Journal of Personality and Social Psychology, 86, 96–111.PubMedCrossRefGoogle Scholar
  52. MacLullich, A. M., Ferguson, K. J., Deary, I. J., Seckl, J. R., Starr, J. M., & Wardlaw, J. M. (2002). Intracranial capacity and brain volumes are associated with cognition in healthy elderly men. Neurology, 59, 169–174.PubMedCrossRefGoogle Scholar
  53. McDaniel, M. A. (2005). Big-brained people are smarter: a meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33, 337–346.CrossRefGoogle Scholar
  54. McGrew, K. S. (2005). The cattell-horn-carroll theory of cognitive abilities: past, present, and future. In D. P. Flanagan, J. L. Genshaft, & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 136–182). New York: Guilford.Google Scholar
  55. Narr, K. L., Woods, R. P., Thompson, P. M., Szeszko, P., Robinson, D., Dimtcheva, T., & Bilder, R. M. (2007). Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cerebral Cortex, 17, 2163–2171.PubMedCrossRefGoogle Scholar
  56. Potharst, E. S., Houtzager, B. A., van Sonderen, L., Tamminga, P., Kok, J. H., Last, B. F., & van Wassenaer, A. G. (2012). Prediction of cognitive abilities at the age of 5 years using developmental follow-up assessments at the age of 2 and 3 years in very preterm children. Developmental Medicine and Child Neurology, 54, 240–246.PubMedCrossRefGoogle Scholar
  57. Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven’s progressive matrices test. Cognitive Psychology, 33, 43–63.PubMedCrossRefGoogle Scholar
  58. Quereshi, M. Y., & Seitz, R. (1994). Gender differences on the WPPSI, the WISC-R, and the WPPSI-R. Current Psychology, 13, 117–123.CrossRefGoogle Scholar
  59. Rathbone, R., Counsell, S. J., Kapellou, O., Dyet, L., Kennea, N., Hajnal, J., & Edwards, A. D. (2011). Perinatal cortical growth and childhood neurocognitive abilities. Neurology, 77, 1510–1517.PubMedCrossRefGoogle Scholar
  60. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119(Pt 5), 1763–1774.PubMedCrossRefGoogle Scholar
  61. Rushton, J. P., & Ankney, C. D. (2009). Whole brain size and general mental ability: a review. The International Journal of Neuroscience, 119, 691–731.PubMedCrossRefGoogle Scholar
  62. Sattler, J. M. (1988). Assessment of Intelligence (3rd ed.). San Diego: Jerome M. Sattler.Google Scholar
  63. Sattler, J. M. (2001). Assessment of children: Cognitive applications (4th ed.). La Mesa: Jerome M. Sattler.Google Scholar
  64. Saxon, T. F., Colombo, J., Robinson, E. L., & Frick, J. E. (2000). Dyadic interaction profiles in infancy and preschool intelligence. Journal of School Psychology, 38, 9–25.CrossRefGoogle Scholar
  65. Schmitt, J. E., Eyler, L. T., Giedd, J. N., Kremen, W. S., Kendler, K. S., & Neale, M. C. (2007). Review of twin and family studies on neuroanatomic phenotypes and typical neurodevelopment. Twin Research and Human Genetics, 10, 683–694.PubMedCrossRefGoogle Scholar
  66. Schneider, W., Perner, J., Bullock, M., Stefanek, J., & Ziegler, A. (1999). Development of intelligence and thinking. In F. E. W. W. Schneider (Ed.), Individual development from 3 to 12: The Munich longitudinal study on the genesis of individual competencies (LOGIC) (pp. 9–28). Cambridge: Cambridge University Press.Google Scholar
  67. Schumann, C. M., Hamstra, J., Goodlin-Jones, B. L., Kwon, H., Reiss, A. L., & Amaral, D. G. (2007). Hippocampal size positively correlates with verbal IQ in male children. Hippocampus, 17, 486–493.PubMedCrossRefGoogle Scholar
  68. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., & Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440, 676–679.PubMedCrossRefGoogle Scholar
  69. Simonton, D. K. (2003). Francis Galton’s hereditary genius: its place in the history and psychology of science. In R. J. Sternberg (Ed.), The anatomy of impact: What makes the great works of psychology great (pp. 3–18). Washington: American Psychological Association.CrossRefGoogle Scholar
  70. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–315.PubMedCrossRefGoogle Scholar
  71. Spearman, C. E. (1923). The nature of intelligenceand the principles of cognition. London: Macmillan.Google Scholar
  72. Stern, W. (1912). The psychological methods of intelligence testing (G. Whipple, Trans.). Baltimore: Warwick and York.Google Scholar
  73. Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press.Google Scholar
  74. Sternberg, R. J. (1999). The theory of successful intelligence. Review of General Psychology, 3, 292–316.CrossRefGoogle Scholar
  75. Sternberg, R. J., & Berg, C. A. (1986). Quantitative integration: definitions of intelligence: a comparison of the 1921 and 1986 symposia. In R. J. Sternberg & D. K. Detterman (Eds.), What is intelligence? Contemporary viewpoints on its nature and definition (pp. 155–162). Norwood: Ablex.Google Scholar
  76. Terman, L. (1916). The measurement of intelligence. Boston: Houghton Mifflin.CrossRefGoogle Scholar
  77. Thatcher, R. W. (1991). Maturation of the human frontal lobes: physiological evidence for staging. Developmental Neuropsychology, 7, 397–419.CrossRefGoogle Scholar
  78. Thompson, P. M., Cannon, T. D., Narr, K. L., van Erp, T., Poutanen, V. P., Huttunen, M., & Toga, A. W. (2001). Genetic influences on brain structure. Nature Neuroscience, 4, 1253–1258.PubMedCrossRefGoogle Scholar
  79. Thorndike, R., Hagen, E. P., & Sattler, J. M. (1986). Technical manual: Stanford-binet intelligence scale (4th ed.). Chicago: Riverside.Google Scholar
  80. Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
  81. Tsujimoto, S. (2008). The prefrontal cortex: functional neural development during early childhood. The Neuroscientist, 14, 345–358.PubMedCrossRefGoogle Scholar
  82. Vernon, P. E. (1950). The structure of human abilities. London: Methuen.Google Scholar
  83. Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., & de Menezes Santos, M. (1999). A system for relational reasoning in human prefrontal cortex. Psychological Science, 10, 119–125.CrossRefGoogle Scholar
  84. Ward, K. E., Rothlisberg, B. A., & McIntosh, D. E. (2011). Assessing the SB-V factor structure in a sample of preschool children. Psychology in the Schools, 48, 454–463.CrossRefGoogle Scholar
  85. Wechsler, D. (1939). The measurement of adult intelligence. Baltimore: Williams and Wilkins.CrossRefGoogle Scholar
  86. White, K. R. (1982). The relation between socioeconomic status and academic achievement. Psychological Bulletin, 91, 461–481.CrossRefGoogle Scholar
  87. Witelson, S. F., Beresh, H., & Kigar, D. L. (2006). Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. Brain, 129(Pt 2), 386–398.PubMedGoogle Scholar
  88. Woodcock, R. W., & Johnson, M. B. (1989). Woodcock-johnson psycho-educational battery-revised. Allen: DLM Teaching Resources.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Independent Private PracticePotomacUSA
  2. 2.Departments of Neurosciences and PediatricsInova Children’s HospitalFalls ChurchUSA
  3. 3.Professional Psychology Program, Columbian College of Arts and SciencesThe George Washington UniversityWashingtonUSA

Personalised recommendations