Advertisement

Neuropsychology Review

, Volume 22, Issue 4, pp 438–450 | Cite as

Late Preterm Birth: A Review of Medical and Neuropsychological Childhood Outcomes

  • Ida Sue Baron
  • Fern R. Litman
  • Margot D. Ahronovich
  • Robin Baker
Review

Abstract

Late preterm (LP) birth (34 0/7 - 36 6/7 weeks’ gestation) accounts for nearly three-fourths of all preterm births, making this population a sizeable public health concern. The immature fetal development associated with LP delivery increases the risk of mortality and short-term medical complications. Which combination of maternal, fetal, or neonatal risk factors may be most critical has only recently begun to be addressed, and whether LP birth’s disruptive impact on brain development will exert adverse effects on neuropsychological functioning in childhood and adolescence has been understudied. Early data have shown a graded response, with LP children often functioning better than very preterm children but worse than term children, and with subtle intellectual and neuropsychological deficits in LP children compared with healthy children born at term gestational age. Further characterization of the neuropsychological profile is required and would be best accomplished through prospective longitudinal studies. Moreover, since moderate and LP births result in disparate medical and psychological outcomes, the common methodology of combining these participants into a single research cohort to assess risk and outcome should be reconsidered. The rapidly growing LP outcomes literature reinforces a critical principle: fetal development occurs along a dynamic maturational continuum from conception to birth, with each successive gestational day likely to improve overall outcome.

Keywords

Near term Developmental outcomes Cognition Neurodevelopment Neuropsychological outcome Learning Medical risk factors Brain development 

References

  1. Abe, K., Shapiro-Mendoza, C. K., Hall, L. R., & Satten, G. A. (2010). Late preterm birth and risk of developing asthma. Journal of Pediatrics, 157, 74–78.PubMedGoogle Scholar
  2. ACOG committee opinion No. 404. Late-preterm infants. (2008). Obstetrics and Gynecology, 111, 1029-1032.Google Scholar
  3. Adams-Chapman, I. (2006). Neurodevelopmental outcome of the late preterm infant. Clinics in Perinatology, 33, 947–964.PubMedGoogle Scholar
  4. Anadkat, J. S., Kuzniewicz, M. W., Chaudhari, B. P., Cole, F. S., & Hamvas, A. (2012). Increased risk for respiratory distress among white, male, late preterm and term infants. Journal of Perinatology. doi: 10.1038/jp.2011.191.
  5. Ananth, C. V., Gyamfi, C., & Jain, L. (2008). Characterizing risk profiles of infants who are delivered at late preterm gestations: does it matter? American Journal of Obstetrics and Gynecology, 199, 329–331.PubMedGoogle Scholar
  6. Ashton, D. M. (2010). Elective delivery at less than 39 weeks. Current Opinion in Obstetrics and Gynecology, 22, 506–510.PubMedGoogle Scholar
  7. Baron, I. S., & Rey-Casserly, C. (2010). Extremely preterm birth outcome: a review of four decades of cognitive research. Neuropsychology Review, 20, 430–452.Google Scholar
  8. Baron, I. S., Erickson, K., Ahronovich, M. D., Coulehan, K., Baker, R., & Litman, F. R. (2009). Visuospatial and verbal fluency relative deficits in ‘complicated’ late-preterm preschool children. Early Human Development, 85, 751–754.PubMedGoogle Scholar
  9. Baron, I. S., Erickson, K., Ahronovich, M. D., Litman, F. R., & Brandt, J. (2010). Spatial location memory discriminates children born at extremely low birth weight and late-preterm at age three. Neuropsychology, 24, 787–794.PubMedGoogle Scholar
  10. Baron, I. S., Brandt, J., Ahronovich, M. D., Baker, R., Erickson, K., & Litman, F. R. (2011). Selective deficit in spatial location memory in extremely low birth weight children at age six: The PETIT Study. Child Neuropsychology. doi: 10.1080/09297049.2011.613815.
  11. Baron, I. S., Erickson, K., Ahronovich, M. D., Baker, R., & Litman, F. R. (2011). Cognitive deficit in preschoolers born late-preterm. Early Human Development, 87, 115–119.PubMedGoogle Scholar
  12. Baron, I. S., Kerns, K. A., Muller, U., Ahronovich, M. D., & Litman, F. R. (2011). Executive functions in extremely low birth weight and late-preterm preschoolers: Effects on working memory and response inhibition. Child Neuropsychology.Google Scholar
  13. Barros, M. C., Mitsuhiro, S., Chalem, E., Laranjeira, R. R., & Guinsburg, R. (2011). Neurobehavior of late preterm infants of adolescent mothers. Neonatology, 99, 133–139.PubMedGoogle Scholar
  14. Bart, O., Shayevits, S., Gabis, L. V., & Morag, I. (2011). Prediction of participation and sensory modulation of late preterm infants at 12 months: A prospective study. Research in Developmental Disabilities.Google Scholar
  15. Barton, J. R., Barton, L. A., Istwan, N. B., Desch, C. N., Rhea, D. J., Stanziano, G. J., & Sibai, B. M. (2011). Elective delivery at 34(0/7) to 36(6/7) weeks’ gestation and its impact on neonatal outcomes in women with stable mild gestational hypertension. American Journal of Obstetrics and Gynecology, 204, e1–5.Google Scholar
  16. Bastek, J. A., Sammel, M. D., Pare, E., Srinivas, S. K., Posencheg, M. A., & Elovitz, M. A. (2008). Adverse neonatal outcomes: examining the risks between preterm, late preterm, and term infants. American Journal of Obstetrics and Gynecology, 199, e361–368.Google Scholar
  17. Berard, A., Le Tiec, M., & De Vera, M. A. (2012). Study of the costs and morbidities of late-preterm birth. Archives of Disease in Children Fetal and Neonatal Edition. doi: 10.1136/archdischild-2011-300969.
  18. Bird, T. M., Bronstein, J. M., Hall, R. W., Lowery, C. L., Nugent, R., & Mays, G. P. (2010). Late preterm infants: birth outcomes and health care utilization in the first year. Pediatrics, 126, e311–319.PubMedGoogle Scholar
  19. Bjorkquist, O. A., Fryer, S. L., Reiss, A. L., Mattson, S. N., & Riley, E. P. (2010). Cingulate gyrus morphology in children and adolescents with fetal alcohol spectrum disorders. Psychiatry Research, 181, 101–107.PubMedGoogle Scholar
  20. Bloomfield, F. H. (2011). Epigenetic modifications may play a role in the developmental consequences of early life events. Journal of Neurodevelopmental Disorders, 3, 348–355.Google Scholar
  21. Booth, L. C., Gunn, A. J., Malpas, S. J., Barrett, C. J., Davidson, J. O., Guild, S. J., & Bennet, L. (2011). Baroreflex control of renal sympathetic nerve activity and heart rate in near-term fetal sheep. Experimental Physiology, 96, 736–744.Google Scholar
  22. Boyle, E. M., Poulsen, G., Field, D. J., Kurinczuk, J. J., Wolke, D., Alfirevic, Z., & Quigley, M. A. (2012). Effects of gestational age at birth on health outcomes at 3 and 5 years of age: population based cohort study. BMJ, 344, e896.PubMedGoogle Scholar
  23. Brown, N. C., Inder, T. E., Bear, M. J., Hunt, R. W., Anderson, P. J., & Doyle, L. W. (2009). Neurobehavior at term and white and gray matter abnormalities in very preterm infants. Journal of Pediatrics, 155, 32–38.PubMedGoogle Scholar
  24. Burdorf, A., Brand, T., Jaddoe, V. W., Hofman, A., Mackenbach, J. P., & Steegers, E. A. (2011). The effects of work-related maternal risk factors on time to pregnancy, preterm birth and birth weight: the Generation R Study. Occupational and Environmental Medicine, 68, 197–204.PubMedGoogle Scholar
  25. Buss, C., Davis, E. P., Muftuler, L. T., Head, K., & Sandman, C. A. (2010). High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology, 35, 141–153.PubMedGoogle Scholar
  26. Caravale, B., Tozzi, C., Albino, G., & Vicari, S. (2005). Cognitive development in low risk preterm infants at 3–4 years of life. Archive of Disease in Childhood Fetal and Neonatal Edition, 90, F474–479.Google Scholar
  27. Caravale, B., Mirante, N., Vagnoni, C., & Vicari, S. (2011). Change in cognitive abilities over time during preschool age in low risk preterm children. Early Human Development, 88, 363–377.PubMedGoogle Scholar
  28. Carreno, C. A., Costantine, M. M., Holland, M. G., Ramin, S. M., Saade, G. R., & Blackwell, S. C. (2011). Approximately one-third of medically indicated late preterm births are complicated by fetal growth restriction. American Journal of Obstetrics and Gynecology, 204, e261–264.Google Scholar
  29. Carter, M. F., Fowler, S., Holden, A., Xenakis, E., & Dudley, D. (2011). The late preterm birth rate and its association with comorbidities in a population-based study. American Journal of Perinatology, 28, 703–707.PubMedGoogle Scholar
  30. Cheng, Y. W., Nicholson, J. M., Nakagawa, S., Bruckner, T. A., Washington, A. E., & Caughey, A. B. (2008). Perinatal outcomes in low-risk term pregnancies: do they differ by week of gestation? American Journal of Obstetrics and Gynecologyl, 199, e371–377.Google Scholar
  31. Chi, J. G., Dooling, E. C., & Gilles, F. H. (1977). Left-right asymmetries of the temporal speech areas of the human fetus. Archives of Neurology, 34, 346–348.PubMedGoogle Scholar
  32. Chyi, L. J., Lee, H. C., Hintz, S. R., Gould, J. B., & Sutcliffe, T. L. (2008). School outcomes of late preterm infants: special needs and challenges for infants born at 32 to 36 weeks gestation. Journal of Pediatrics, 153, 25–31.PubMedGoogle Scholar
  33. Clouchoux, C., Guizard, N., Evans, A. C., du Plessis, A. J., & Limperopoulos, C. (2011). Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. American Journal of Obstetrics and Gynecology, 173, e1–8.Google Scholar
  34. Cohen-Wolkowiez, M., Moran, C., Benjamin, D. K., Cotten, C. M., Clark, R. H., Benjamin, D. K., Jr., & Smith, P. B. (2009). Early and late onset sepsis in late preterm infants. Pediatric Infectious Disease Journal, 28, 1052–1056.PubMedGoogle Scholar
  35. Colin, A. A., McEvoy, C., & Castile, R. G. (2010). Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks’ gestational age. Pediatrics, 126, 115–128.PubMedGoogle Scholar
  36. Committee opinion no. 515: Health care for urban American Indian and Alaska Native women. (2012). Obstetrics and Gynecology, 119, 201–205.Google Scholar
  37. Counsell, S. J., Allsop, J. M., Harrison, M. C., Larkman, D. J., Kennea, N. L., Kapellou, O., & Rutherford, M. A. (2003). Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics, 112, 1–7.PubMedGoogle Scholar
  38. Counsell, S. J., Edwards, A. D., Chew, A. T., Anjari, M., Dyet, L. E., Srinivasan, L., & Cowan, F. M. (2008). Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain, 131, 3201–3208.PubMedGoogle Scholar
  39. Cowan, F. M., & de Vries, L. S. (2005). The internal capsule in neonatal imaging. Seminars in Fetal and Neonatal Medicine, 10, 461–474.PubMedGoogle Scholar
  40. Craigo, S. D. (2011). Indicated preterm birth for fetal anomalies. Seminars in Perinatology, 35, 270–276.PubMedGoogle Scholar
  41. Crump, C., Sundquist, K., Sundquist, J., & Winkleby, M. A. (2011). Gestational age at birth and mortality in young adulthood. Journal of the American Medical Association, 306, 1233–1240.PubMedGoogle Scholar
  42. Crump, C., Winkleby, M. A., Sundquist, K., & Sundquist, J. (2011). Risk of Diabetes Among Young Adults Born Preterm in Sweden. Diabetes Care, 34, 1109–1113.Google Scholar
  43. Currie, A. J., Curtis, S., Strunk, T., Riley, K., Liyanage, K., Prescott, S., & Burgner, D. (2011). Preterm infants have deficient monocyte and lymphocyte cytokine responses to group B streptococcus. Infection and Immunity, 79, 1586–1596.Google Scholar
  44. Davis, E. P., Buss, C., Muftuler, L. T., Head, K., Hasso, A., Wing, D. A., & Sandman, C. A. (2011). Children’s Brain Development Benefits from Longer Gestation. Frontiers in Psychology, 2, 1.PubMedGoogle Scholar
  45. de Graaf-Peters, V. B., & Hadders-Algra, M. (2006). Ontogeny of the human central nervous system: what is happening when? Early Human Development, 82, 257–266.PubMedGoogle Scholar
  46. Delpisheh, A., Brabin, L., Attia, E., & Brabin, B. J. (2008). Pregnancy late in life: a hospital-based study of birth outcomes. Journal of Womens Health, 17, 965–970.Google Scholar
  47. Dimitriou, G., Fouzas, S., Giannakopoulos, I., Papadopoulos, V. G., Decavalas, G., & Mantagos, S. (2011). Prediction of respiratory failure in late-preterm infants with respiratory distress at birth. European Journal of Pediatrics, 170, 45–50.PubMedGoogle Scholar
  48. Eide, M. G., Oyen, N., Skjaerven, R., & Bjerkedal, T. (2007). Associations of birth size, gestational age, and adult size with intellectual performance: evidence from a cohort of Norwegian men. Pediatric Research, 62, 636–642.Google Scholar
  49. Engle, W. A. (2006). A recommendation for the definition of “late preterm” (near-term) and the birth weight-gestational age classification system. Seminars in Perinatology, 30, 2–7.PubMedGoogle Scholar
  50. Engle, W. A., Tomashek, K. M., & Wallman, C. (2007). “Late-preterm” infants: a population at risk. Pediatrics, 120, 1390–1401.PubMedGoogle Scholar
  51. Escobar, G. J., Clark, R. H., & Greene, J. D. (2006). Short-term outcomes of infants born at 35 and 36 weeks gestation: we need to ask more questions. Seminars in Perinatology, 30, 28–33.PubMedGoogle Scholar
  52. Frye, R. E., Hasan, K., Malmberg, B., Desouza, L., Swank, P., Smith, K., & Landry, S. (2010). Superior longitudinal fasciculus and cognitive dysfunction in adolescents born preterm and at term. Developmental Medicine and Child Neurology, 52, 760–766.PubMedGoogle Scholar
  53. Fryer, S. L., Mattson, S. N., Jernigan, T. L., Archibald, S. L., Jones, K. L., & Riley, E. P. (2012). Caudate Volume Predicts Neurocognitive Performance in Youth with Heavy Prenatal Alcohol Exposure. Alcohol Clinical and Exeperimental Research.  doi:10.1111/j.1530-0277.2012.01811.x.
  54. Fuchs, K., & Gyamfi, C. (2008). The influence of obstetric practices on late prematurity. Clinics in Perinatology, 35, 343–360.PubMedGoogle Scholar
  55. Gonzalez, F. F., & Miller, S. P. (2006). Does perinatal asphyxia impair cognitive function without cerebral palsy? Archives of Disease in Childhood. Fetal and Neonatal Edition, 91, F454–459.PubMedGoogle Scholar
  56. Goyal, N. K., Fiks, A. G., & Lorch, S. A. (2011). Association of Late-Preterm Birth With Asthma in Young Children: Practice-Based Study. Pediatrics, 128, e830–838.Google Scholar
  57. Gurka, M. J., LoCasale-Crouch, J., & Blackman, J. A. (2010). Long-term cognition, achievement, socioemotional, and behavioral development of healthy late-preterm infants. Archives of Pediatrics & Adolescent Medicine, 164, 525–532.Google Scholar
  58. Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L., Wilson-Costello, D., & Morrow, M. (2005). Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics, 116, 333–341.PubMedGoogle Scholar
  59. Henderson, J. J., McWilliam, O. A., Newnham, J. P., & Pennell, C. E. (2011). Preterm birth aetiology 2004-2008. Maternal factors associated with three phenotypes: spontaneous preterm labour, preterm pre-labour rupture of membranes and medically indicated preterm birth. The Journal of Maternal-Fetal & Neonatal Medicine, 25, 642–647.Google Scholar
  60. Hibbard, J. U., Wilkins, I., Sun, L., Gregory, K., Haberman, S., Hoffman, M., & Zhang, J. (2010). Respiratory morbidity in late preterm births. Journal of the American Medical Association, 304, 419–425.PubMedGoogle Scholar
  61. Hiltunen, L. M., Laivuori, H., Rautanen, A., Kaaja, R., Kere, J., Krusius, T., & Paunio, M. (2011). Factor V Leiden as a risk factor for preterm birth–a population-based nested case-control study. Journal of Thrombosis and Haemostasis, 9, 71–78.PubMedGoogle Scholar
  62. Huddy, C. L., Johnson, A., & Hope, P. L. (2001). Educational and behavioural problems in babies of 32–35 weeks gestation. Archives of Disease in Children Fetal and Neonatal Edition, 85, F23–28.Google Scholar
  63. Hüppi, P. S., Warfield, S., Kikinis, R., Barnes, P. D., Zientara, G. P., Jolesz, F. A., & Volpe, J. J. (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Annals of Neurology, 43, 224–235.PubMedGoogle Scholar
  64. Hüppi, P. S., Murphy, B., Maier, S. E., Zientara, G. P., Inder, T. E., Barnes, P. D., & Volpe, J. J. (2001). Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics, 107, 455–460.PubMedGoogle Scholar
  65. Iams, J. D., & Donovan, E. F. (2011). Spontaneous late preterm births: what can be done to improve outcomes? Seminars in Perinatology, 35, 309–313.PubMedGoogle Scholar
  66. Inder, T. E., Warfield, S. K., Wang, H., Huppi, P. S., & Volpe, J. J. (2005). Abnormal cerebral structure is present at term in premature infants. Pediatrics, 115, 286–294.PubMedGoogle Scholar
  67. Jaddoe, V. W., Bakker, R., Hofman, A., Mackenbach, J. P., Moll, H. A., Steegers, E. A., & Witteman, J. C. (2007). Moderate alcohol consumption during pregnancy and the risk of low birth weight and preterm birth. The generation R study. Annals of Epidemiology, 17, 834–840.Google Scholar
  68. Jaeger, E., Silveira, R. C., & Procianoy, R. S. (2011). Cerebellar growth in very low birth weight infants. Journal of Perinatology, 31, 757–759.Google Scholar
  69. Jaiswal, A., Murki, S., Gaddam, P., & Reddy, A. (2010). Early Neonatal Morbidities in Late Preterm Infants. Indian Pediatrics.Google Scholar
  70. Jiang, Z. D., Ping, L. L., & Wilkinson, A. R. (2012). Functional abnormality of the auditory brainstem in high-risk late preterm infants. Clinical Neurophysiology, 123, 993–1001.Google Scholar
  71. Jiang, Z. D., Zhou, Y., Ping, L. L., & Wilkinson, A. R. (2011). Brainstem auditory response findings in late preterm infants in neonatal intensive care unit. Acta Paediatrica, 100, e51–54.Google Scholar
  72. Kalia, J. L., Visintainer, P., Brumberg, H. L., Pici, M., & Kase, J. (2009). Comparison of enrollment in interventional therapies between late-preterm and very preterm infants at 12 months’ corrected age. Pediatrics, 123, 804–809.PubMedGoogle Scholar
  73. Kalyoncu, O., Aygun, C., Cetinoglu, E., & Kucukoduk, S. (2009). Neonatal morbidity and mortality of late-preterm babies. The Journal of Maternal-Fetal & Neonatal Medicine, 23, 607–612.Google Scholar
  74. Kerstjens, J. M., de Winter, A. F., Bocca-Tjeertes, I. F., Ten Vergert, E. M., Reijneveld, S. A., & Bos, A. F. (2011). Developmental Delay in Moderately Preterm-Born Children at School Entry. Journal of Pediatrics. doi: 10.1016/j.jpeds.2010.12.041.
  75. Khashu, M., Narayanan, M., Bhargava, S., & Osiovich, H. (2009). Perinatal outcomes associated with preterm birth at 33 to 36 weeks’ gestation: a population-based cohort study. Pediatrics, 123, 109–113.PubMedGoogle Scholar
  76. Kinney, H. C. (2006). The near-term (late preterm) human brain and risk for periventricular leukomalacia: a review. Seminars in Perinatology, 30, 81–88.PubMedGoogle Scholar
  77. Kirby, R. S., & Wingate, M. S. (2010). Late preterm birth and neonatal outcome: is 37 weeks’ gestation a threshold level or a road marker on the highway of perinatal risk? Birth, 37, 169–171.PubMedGoogle Scholar
  78. Kirkegaard, I., Obel, C., Hedegaard, M., & Henriksen, T. B. (2006). Gestational age and birth weight in relation to school performance of 10-year-old children: a follow-up study of children born after 32 completed weeks. Pediatrics, 118, 1600–1606.PubMedGoogle Scholar
  79. Kline, A., Leonberger, K. A., & Baron, I. S. (2012). Neonatal Encephalopathy. In I. S. Baron & C. Rey-Casserly (Eds.), Pediatric Neuropsychology: Medical Advances and Lifespan Outcomes. New York: Oxford University Press.Google Scholar
  80. Kontis, D., Catani, M., Cuddy, M., Walshe, M., Nosarti, C., Jones, D., & Allin, M. (2009). Diffusion tensor MRI of the corpus callosum and cognitive function in adults born preterm. NeuroReport, 20, 424–428.PubMedGoogle Scholar
  81. Kotecha, S. J., Dunstan, F. D., & Kotecha, S. (2012). Long term respiratory outcomes of late preterm-born infants. Seminars in Fetal and Neonatal Medicine. doi: 10.1016/j.siny.2012.01.004.
  82. Kramer, M. S., Demissie, K., Yang, H., Platt, R. W., Sauve, R., & Liston, R. (2000). The contribution of mild and moderate preterm birth to infant mortality. Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. Journal of the American Medical Association, 284, 843–849.PubMedGoogle Scholar
  83. Laughon, S. K., Reddy, U. M., Sun, L., & Zhang, J. (2010). Precursors for late preterm birth in singleton gestations. Obstetrics and Gynecology, 116, 1047–1055.PubMedGoogle Scholar
  84. Lawlor, D. A., Mortensen, L., & Nybo Andersen, A. M. (2011). Mechanisms underlying the associations of maternal age with adverse perinatal outcomes: a sibling study of 264 695 Danish women and their firstborn offspring. International Journal of Epidemiology, 40, 1205–1214.Google Scholar
  85. Lebel, C., Roussotte, F., & Sowell, E. R. (2011). Imaging the impact of prenatal alcohol exposure on the structure of the developing human brain. Neuropsychology Review, 21, 102–118.Google Scholar
  86. Lee, Y. M., Cleary-Goldman, J., & D’Alton, M. E. (2006). The impact of multiple gestations on late preterm (near-term) births. Clinical Perinatology, 33, 777–792.Google Scholar
  87. Leone, A., Ersfeld, P., Adams, M., Meyer Schiffer, P., Bucher, H., & Arlettaz, R. (2012). Neonatal Morbidity in Singleton Late Preterm Infants Compared With Full-Term Infants. Acta Paediatrica, 101, e6–10.Google Scholar
  88. Li, Z., Chen, C., Wilkinson, A. R., & Jiang, Z. (2010). Maximum length sequence brainstem auditory evoked response in low-risk lae preterm babies. The Journal of Maternal-Fetal & Neonatal Medicine, 24, 536–540.Google Scholar
  89. Lindstrom, K., Lindblad, F., & Hjern, A. (2011). Preterm birth and attention-deficit/hyperactivity disorder in schoolchildren. Pediatrics, 127, 858–865.PubMedGoogle Scholar
  90. Linnet, K. M., Wisborg, K., Agerbo, E., Secher, N. J., Thomsen, P. H., & Henriksen, T. B. (2006). Gestational age, birth weight, and the risk of hyperkinetic disorder. Archives of Disease in Childhood, 91, 655–660.PubMedGoogle Scholar
  91. Lipkind, H. S., Slopen, M. E., Pfeiffer, M. R., & McVeigh, K. H. (2012). School-age outcomes of late preterm infants in New York City. American Journal of Obstetrics and Gynecology, 206, e221–226.Google Scholar
  92. Loftin, R. W., Habli, M., Snyder, C. C., Cormier, C. M., Lewis, D. F., & Defranco, E. A. (2010). Late preterm birth. Reviews in Obstetrics and Gynecology, 3, 10–19.PubMedGoogle Scholar
  93. Lubsen, J., Vohr, B., Myers, E., Hampson, M., Lacadie, C., Schneider, K. C., & Ment, L. R. (2011). Microstructural and functional connectivity in the developing preterm brain. Seminars in Perinatology, 35, 34–43.PubMedGoogle Scholar
  94. Mally, P. V., Bailey, S., & Hendricks-Munoz, K. D. (2010). Clinical issues in the management of late preterm infants. Current Problems in Pediatric and Adolescent Health Care, 40, 218–233.PubMedGoogle Scholar
  95. Marret, S., Ancel, P. Y., Marpeau, L., Marchand, L., Pierrat, V., Larroque, B., & Kaminski, M. (2007). Neonatal and 5-year outcomes after birth at 30–34 weeks of gestation. Obstetrics and Gynecology, 110, 72–80.PubMedGoogle Scholar
  96. Martin, J. A., Hamilton, B. E., Sutton, P. D., Ventura, S. J., Mathews, T. J., Kirmeyer, S., & Osterman, M. J. (2010). Births: final data for 2007. National Vital Statistics Reports, 58, 1–85.PubMedGoogle Scholar
  97. Martin, J., Hamilton, B. E., Ventura, S. J., Osterman, M. H. S., Kirmeyer, S., Mathews, T. J., et al. (2011). Births: Final data for 2009. National Vital Statistics Reports, 60. Google Scholar
  98. Mattson, S. N., Crocker, N., & Nguyen, T. T. (2011). Fetal alcohol spectrum disorders: neuropsychological and behavioral features. Neuropsychology Review, 21, 81–101.Google Scholar
  99. McIntire, D. D., & Leveno, K. J. (2008). Neonatal mortality and morbidity rates in late preterm births compared with births at term. Obstetrics and Gynecology, 111, 35–41.PubMedGoogle Scholar
  100. McLaurin, K. K., Hall, C. B., Jackson, E. A., Owens, O. V., & Mahadevia, P. J. (2009). Persistence of morbidity and cost differences between late-preterm and term infants during the first year of life. Pediatrics, 123, 653–659.PubMedGoogle Scholar
  101. Melamed, N., Klinger, G., Tenenbaum-Gavish, K., Herscovici, T., Linder, N., Hod, M., & Yogev, Y. (2009). Short-term neonatal outcome in low-risk, spontaneous, singleton, late preterm deliveries. Obstetrics and Gynecology, 114, 253–260.PubMedGoogle Scholar
  102. Morse, S. B., Zheng, H., Tang, Y., & Roth, J. (2009). Early school-age outcomes of late preterm infants. Pediatrics, 123, e622–629.PubMedGoogle Scholar
  103. Moster, D., Lie, R. T., & Markestad, T. (2008). Long-term medical and social consequences of preterm birth. The New England Journal of Medicine, 359, 262–273.PubMedGoogle Scholar
  104. Munakata, S., Okada, T., Okahashi, A., Yoshikawa, K., Usukura, Y., Makimoto, M., & Okuhata, Y. (2012). Gray matter volumetric MRI differences late-preterm and term infants. Brain & Development. doi: 10.1016/j.braindev.2011.12.011.
  105. Nagy, Z., Westerberg, H., Skare, S., Andersson, J. L., Lilja, A., Flodmark, O., & Klingberg, T. (2003). Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatric Research, 54, 672–679.PubMedGoogle Scholar
  106. Nagy, Z., Lagercrantz, H., & Hutton, C. (2011). Effects of preterm birth on cortical thickness measured in adolescence. Cerebral Cortex, 21, 300–306.PubMedGoogle Scholar
  107. Natarajan, G., Anne, S. R., & Aggarwal, S. (2011). Outcomes of Congenital Heart Disease in Late Preterm Infants: Double Jeopardy? Acta Paediatrica, 100, 1104–1107.Google Scholar
  108. Nepomnyaschy, L., Hegyi, T., Ostfeld, B. M., & Reichman, N. E. (2011). Developmental Outcomes of Late-Preterm Infants at 2 and 4 Years. Maternal and Child Health Journal. doi: 10.1007/s10995-011-0853-2.
  109. Nomura, Y., Rajendran, K., Brooks-Gunn, J., & Newcorn, J. H. (2008). Roles of perinatal problems on adolescent antisocial behaviors among children born after 33 completed weeks: a prospective investigation. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 49, 1108–1117.PubMedGoogle Scholar
  110. Nomura, Y., Halperin, J. M., Newcorn, J. H., Davey, C., Fifer, W. P., Savitz, D. A., & Brooks-Gunn, J. (2009). The risk for impaired learning-related abilities in childhood and educational attainment among adults born near-term. Journal of Pediatric Psychology, 34, 406–418.PubMedGoogle Scholar
  111. Norman, A. L., Crocker, N., Mattson, S. N., & Riley, E. P. (2009). Neuroimaging and fetal alcohol spectrum disorders. Developmental Disabilities Research Reviews, 15, 209–217.PubMedGoogle Scholar
  112. O’Hare, E. D., Lu, L. H., Houston, S. M., Bookheimer, S. Y., Mattson, S. N., O’Connor, M. J., & Sowell, E. R. (2009). Altered frontal-parietal functioning during verbal working memory in children and adolescents with heavy prenatal alcohol exposure. Human Brain Mapping, 30, 3200–3208.PubMedGoogle Scholar
  113. Ornoy, A. (2006). Neuroteratogens in man: an overview with special emphasis on the teratogenicity of antiepileptic drugs in pregnancy. Reproductive Toxicology, 22, 214–226.PubMedGoogle Scholar
  114. Ortigosa Rocha, C., Bittar, R. E., & Zugaib, M. (2010). Neonatal outcomes of late-preterm birth associated or not with intrauterine growth restriction. Obstetrics and Gynecology International 2010. ID 231842.Google Scholar
  115. Peacock, P. J., Henderson, J., Odd, D., & Emond, A. (2012). Early school attainment in late-preterm infants. Archives of Disease in Childhood, 97, 118–120.Google Scholar
  116. Petrini, J. R., Dias, T., McCormick, M. C., Massolo, M. L., Green, N. S., & Escobar, G. J. (2009). Increased risk of adverse neurological development for late preterm infants. Journal of Pediatrics, 154, 169–176.PubMedGoogle Scholar
  117. Picone, S., & Paolillo, P. (2010). Neonatal outcomes in a population of late-preterm infants. The Journal of Maternal-Fetal & Neonatal Medicine, 23(Suppl 3), 116–120.Google Scholar
  118. Prins, S. A., von Lindern, J. S., van Dijk, S., & Versteegh, F. G. (2010). Motor Development of Premature Infants Born between 32 and 34 Weeks. International Journal of Pediatrics, 2010. doi: 10.1155/2010/462048.
  119. Pulver, L. S., Guest-Warnick, G., Stoddard, G. J., Byington, C. L., & Young, P. C. (2009). Weight for gestational age affects the mortality of late preterm infants. Pediatrics, 123, e1072–1077.PubMedGoogle Scholar
  120. Pulver, L. S., Denney, J. M., Silver, R. M., & Young, P. C. (2010). Morbidity and discharge timing of late preterm newborns. Clinical Pediatrics, 49, 1061–1067.PubMedGoogle Scholar
  121. Quigley, M. A., Poulsen, G., Boyle, E., Wolke, D., Field, D., Alfirevic, Z., & Kurinczuk, J. J. (2012). Early term and late preterm birth are associated with poorer school performance at age 5 years: a cohort study. Archives of Disease in Children Fetal and Neonatal Edition. doi: 10.1136/archdischild-2011-300888.
  122. Radtke, J. V. (2011). The paradox of breastfeeding-associated morbidity among late preterm infants. Journal of Obstetric, Gynecologic, and Neonatal Nursing, 40, 9–24.PubMedGoogle Scholar
  123. Raju, T. N., Higgins, R. D., Stark, A. R., & Leveno, K. J. (2006). Optimizing care and outcome for late-preterm (near-term) infants: a summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics, 118, 1207–1214.PubMedGoogle Scholar
  124. Ramachandrappa, A., & Jain, L. (2009). Health issues of the late preterm infant. Pediatric Clinics of North America, 56, 565–577.PubMedGoogle Scholar
  125. Refuerzo, J. S., Momirova, V., Peaceman, A. M., Sciscione, A., Rouse, D. J., Caritis, S. N., et al. (2012). Neonatal outcomes in twin pregnancies delivered moderately preterm, late preterm, and term. American Journal of Perinatology, 27, 537–542.Google Scholar
  126. Resch, B., & Paes, B. (2011). Are late preterm infants as susceptible to RSV infection as full term infants? Early Human Development, 87(Suppl 1), S47–49.PubMedGoogle Scholar
  127. Romeo, D. M., Di, Stefano, Romeo, D. M., Di Stefano, A., Conversano, M., Ricci, D., Mazzone, D., Romeo, M. G., & Mercuri, E. (2010). Neurodevelopmental outcome at 12 and 18 months in late preterm infants. European Journal of Paediatric Neurology, 14, 503–507.Google Scholar
  128. Romeo, D. M., Ricci, D., Brogna, C., Cilauro, S., Lombardo, M. E., Romeo, M. G., & Mercuri, E. (2011). Neurological examination of late-preterm infants at term age. European Journal of Paediatric Neurology, 15, 353–360.Google Scholar
  129. Romero, R., Gotsch, F., Pineles, B., & Kusanovic, J. P. (2007). Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutrition Review, 65(12 Pt 2), S194–202.Google Scholar
  130. Roussotte, F. F., Sulik, K. K., Mattson, S. N., Riley, E. P., Jones, K. L., Adnams, C. M., & Sowell, E. R. (2012). Regional brain volume reductions relate to facial dysmorphology and neurocognitive function in fetal alcohol spectrum disorders. Human Brain Mapping, 33, 920–937.PubMedGoogle Scholar
  131. Russell, R. B., Petrini, J. R., Damus, K., Mattison, D. R., & Schwarz, R. H. (2003). The changing epidemiology of multiple births in the United States. Obstetrics and Gynecology, 101, 129–135.PubMedGoogle Scholar
  132. Saluja, S., Agarwal, A., Kler, N., & Amin, S. (2010). Auditory neuropathy spectrum disorder in late preterm and term infants with severe jaundice. International Journal of Pediatric Otorhinolaryngology, 74, 1292–1297.PubMedGoogle Scholar
  133. Santos, I. S., Matijasevich, A., Domingues, M. R., Barros, A. J., Victora, C. G., & Barros, F. C. (2009). Late preterm birth is a risk factor for growth faltering in early childhood: a cohort study. BMC Pediatrics, 9, 71.PubMedGoogle Scholar
  134. Scher, M. S., Johnson, M. W., Ludington, S. M., & Loparo, K. (2011). Physiologic brain dysmaturity in late preterm infants. Pediatric Research, 70, 524–528.Google Scholar
  135. Shapiro-Mendoza, C. K., Tomashek, K. M., Kotelchuck, M., Barfield, W., Nannini, A., Weiss, J., & Declercq, E. (2008). Effect of late-preterm birth and maternal medical conditions on newborn morbidity risk. Pediatrics, 121, e223–232.PubMedGoogle Scholar
  136. Simmons, R. W., Nguyen, T. T., Levy, S. S., Thomas, J. D., Mattson, S. N., & Riley, E. P. (2012). Children with heavy prenatal alcohol exposure exhibit deficits when regulating isometric force. Alcoholism, Clinical and Experimental Research, 36, 302–309.PubMedGoogle Scholar
  137. Slotkin, T. A., & Seidler, F. J. (2011). Mimicking maternal smoking and pharmacotherapy of preterm labor: fetal nicotine exposure enhances the effect of late gestational dexamethasone treatment on noradrenergic circuits. Brain Research Bulletin, 86, 435–440.PubMedGoogle Scholar
  138. Stiles, J. (2008). The Fundamentals of Brain Development: Integrating nature and nurture. Cambridge: Harvard University Press.Google Scholar
  139. Swenson, A. W., Dechert, R. E., Schumacher, R. E., & Attar, M. A. (2012). The effect of late preterm birth on mortality of infants with major congenital heart defects. Journal of Perinatology, 32, 51–54.Google Scholar
  140. Talge, N. M., Holzman, C., Wang, J., Lucia, V., Gardiner, J., & Breslau, N. (2010). Late-preterm birth and its association with cognitive and socioemotional outcomes at 6 years of age. Pediatrics, 126, 1124–1131.PubMedGoogle Scholar
  141. Tam, E. W., Miller, S. P., Studholme, C., Chau, V., Glidden, D., Poskitt, K. J., & Barkovich, A. J. (2011). Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. Journal of Pediatrics, 158, 366–371.PubMedGoogle Scholar
  142. Teune, M. J., Bakhuizen, S., Bannerman, C. G., Opmeer, B. C., van Kaam, A. H., van Wassenaer, A. G., & Mol, B. W. (2011). A systematic review of severe morbidity in infants born late preterm. American Journal of Obstetrics and Gynecology, 205, e1–9.Google Scholar
  143. Tita, A. T., Landon, M. B., Spong, C. Y., Lai, Y., Leveno, K. J., Varner, M. W., & Mercer, B. M. (2009). Timing of elective repeat cesarean delivery at term and neonatal outcomes. The New England Journal of Medicine, 360, 111–120.PubMedGoogle Scholar
  144. Tomashek, K. M., Shapiro-Mendoza, C. K., Davidoff, M. J., & Petrini, J. R. (2007). Differences in mortality between late-preterm and term singleton infants in the United States, 1995-2002. Journal of Pediatrics, 151, 450–456.PubMedGoogle Scholar
  145. Vachharajani, A. J., & Dawson, J. G. (2009). Short-term outcomes of late preterms: an institutional experience. Clinical Pediatria (Phila), 48, 383–388.Google Scholar
  146. van Baar, A. L., Vermaas, J., Knots, E., de Kleine, M. J., & Soons, P. (2009). Functioning at school age of moderately preterm children born at 32 to 36 weeks’ gestational age. Pediatrics, 124, 251–257.PubMedGoogle Scholar
  147. van Soelen, I. L., Brouwer, R. M., Peper, J. S., van Beijsterveldt, T. C., van Leeuwen, M., de Vries, L. S., & Boomsma, D. I. (2010). Effects of gestational age and birth weight on brain volumes in healthy 9 year-old children. Journal of Pediatrics, 156, 896–901.PubMedGoogle Scholar
  148. Voigt, B., Pietz, J., Pauen, S., Kliegel, M., & Reuner, G. (2011). Cognitive development in very vs. moderately to late preterm and full-term children: Can effortful control account for group differences in toddlerhood? Early Human Development, 88, 307–313Google Scholar
  149. Volpe, J. J. (2003). Cerebral white matter injury of the premature infant-more common than you think. Pediatrics, 112(1 Pt 1), 176–180.PubMedGoogle Scholar
  150. Volpe, J. J. (2009). Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. Journal of Child Neurology, 24, 1085–1104.PubMedGoogle Scholar
  151. Wang, M. L., Dorer, D. J., Fleming, M. P., & Catlin, E. A. (2004). Clinical outcomes of near-term infants. Pediatrics, 114, 372–376.PubMedGoogle Scholar
  152. Weng, Y. H., Chiu, Y. W., Cheng, S. W., & Hsieh, M. Y. (2011). Risk assessment for adverse outcome in term and late preterm neonates with bilirubin values of 20 mg/dL or more. American Journal of Perinatology, 28, 405–412.Google Scholar
  153. Wisniewski, K., Dambska, M., Sher, J. H., & Qazi, Q. (1983). A clinical neuropathological study of the fetal alcohol syndrome. Neuropediatrics, 14, 197–201.PubMedGoogle Scholar
  154. Woythaler, M. A., McCormick, M. C., & Smith, V. C. (2011). Late preterm infants have worse 24-month neurodevelopmental outcomes than term infants. Pediatrics, 127, e622–629.PubMedGoogle Scholar
  155. Wozniak, J. R., & Muetzel, R. L. (2011). What does diffusion tensor imaging reveal about the brain and cognition in fetal alcohol spectrum disorders. Neuropsychology Review, 21, 133–147.PubMedGoogle Scholar
  156. Xu, G., Broadbelt, K. G., Haynes, R. L., Folkerth, R. D., Borenstein, N. S., Belliveau, R. A., & Kinney, H. C. (2011). Late development of the GABAergic system in the human cerebral cortex and white matter. Journal of Neuropathology and Experimental Neurology, 70, 841–858.PubMedGoogle Scholar
  157. Yang, S., Platt, R. W., & Kramer, M. S. (2010). Variation in child cognitive ability by week of gestation among healthy term births. American Journal of Epidemiology, 171, 399–406.PubMedGoogle Scholar
  158. Yang, Y., Roussotte, F., Kan, E., Sulik, K. K., Mattson, S. N., Riley, E. P., & Sowell, E. R. (2012). Abnormal cortical thickness alterations in fetal alcohol spectrum disorders and their relationships with facial dysmorphology. Cerebral Cortex, 22, 1170–1179.PubMedGoogle Scholar
  159. Zanardo, V., Gambina, I., Begley, C., Litta, P., Cosmi, E., Giustardi, A., & Trevisanuto, D. (2011). Psychological distress and early lactation performance in mothers of late preterm infants. Early Human Development, 87, 321–323.Google Scholar
  160. Zayek, M. M., Benjamin, J. T., Maertens, P., Trimm, R. F., Lal, C. V., & Eyal, F. G. (2011). Cerebellar hemorrhage: a major morbidity in extremely preterm infants. Journal of Perinatology. doi: 10.1038/jp.2011.185.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ida Sue Baron
    • 1
  • Fern R. Litman
    • 2
  • Margot D. Ahronovich
    • 2
  • Robin Baker
    • 2
  1. 1.Departments of Neurosciences and PediatricsInova Children’s HospitalFalls ChurchUSA
  2. 2.Fairfax Neonatal Associates at Inova Children’s HospitalFalls ChurchUSA

Personalised recommendations