Neuropsychology Review

, Volume 22, Issue 3, pp 298–309 | Cite as

Family History and APOE-4 Genetic Risk in Alzheimer’s Disease

  • Markus Donix
  • Gary W. Small
  • Susan Y. Bookheimer


Identifying risk factors for Alzheimer’s disease, such as carrying the APOE-4 allele, and understanding their contributions to disease pathophysiology or clinical presentation is critical for establishing and improving diagnostic and therapeutic strategies. A first-degree family history of Alzheimer’s disease represents a composite risk factor, which reflects the influence of known and unknown susceptibility genes and perhaps non-genetic risks. There is emerging evidence that investigating family history risk associated effects may contribute to advances in Alzheimer’s disease research and ultimately clinical practice.


Alzheimer’s disease APOE Genotype Family history Genetic risk Risk factors Neuroimaging 



Supported by NIH grant P01-AG025831, AG13308, P50 AG 16570, MH/AG58156, MH52453; AG10123; M01-RR00865, General Clinical Research Centers Program; the Fran and Ray Stark Foundation Fund for Alzheimer's Disease Research; the Sence Foundation; and the McMahan Foundation.

Financial Disclosures

The University of California, Los Angeles, owns a U.S. patent (6,274,119) entitled “Methods for Labeling b-Amyloid Plaques and Neurofibrillary Tangles,” and Dr. Small is among the inventors, has received royalties, and may receive royalties on future sales. Dr. Small reports having served as a consultant and/or having received lecture fees from Dakim, Forest, Lilly, and Novartis. Dr. Small also reports having received stock options from Dakim. Drs. Bookheimer and Donix report no financial relationships with commercial interests.


  1. Anand, S. S., Xie, C., Pare, G., Montpetit, A., Rangarajan, S., McQueen, M. J., et al. (2009). Genetic variants associated with myocardial infarction risk factors in over 8000 individuals from five ethnic groups: The INTERHEART Genetics Study. Circulation. Cardiovascular Genetics, 2(1), 16–25.PubMedCrossRefGoogle Scholar
  2. Bandettini, P. A., & Ungerleider, L. G. (2001). From neuron to BOLD: new connections. Nature Neuroscience, 4(9), 864–866.PubMedCrossRefGoogle Scholar
  3. Bassett, S. S., Yousem, D. M., Cristinzio, C., Kusevic, I., Yassa, M. A., Caffo, B. S., et al. (2006). Familial risk for Alzheimer's disease alters fMRI activation patterns. Brain, 129(Pt 5), 1229–1239.PubMedCrossRefGoogle Scholar
  4. Bendlin, B. B., Ries, M. L., Canu, E., Sodhi, A., Lazar, M., Alexander, A. L., et al. (2010). White matter is altered with parental family history of Alzheimer's disease. Alzheimer's & Dementia, 6(5), 394–403.CrossRefGoogle Scholar
  5. Blazquez, L., Otaegui, D., Saenz, A., Paisan-Ruiz, C., Emparanza, J. I., Ruiz-Martinez, J., et al. (2006). Apolipoprotein E epsilon4 allele in familial and sporadic Parkinson's disease. Neuroscience Letters, 406(3), 235–239.PubMedCrossRefGoogle Scholar
  6. Bondi, M. W., Houston, W. S., Eyler, L. T., & Brown, G. G. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology, 64(3), 501–508.PubMedCrossRefGoogle Scholar
  7. Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M. A., Mazziotta, J. C., et al. (2000). Patterns of brain activation in people at risk for Alzheimer's disease. The New England Journal of Medicine, 343(7), 450–456.PubMedCrossRefGoogle Scholar
  8. Borenstein, A. R., Copenhaver, C. I., & Mortimer, J. A. (2006). Early-life risk factors for Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(1), 63–72.PubMedCrossRefGoogle Scholar
  9. Braak, H., & Braak, E. (1997). Staging of Alzheimer-related cortical destruction. International Psychogeriatrics, 9(Suppl 1), 257–261. discussion 269-272.PubMedCrossRefGoogle Scholar
  10. Bretsky, P., Guralnik, J. M., Launer, L., Albert, M., & Seeman, T. E. (2003). The role of APOE-epsilon4 in longitudinal cognitive decline: MacArthur Studies of Successful Aging. Neurology, 60(7), 1077–1081.PubMedCrossRefGoogle Scholar
  11. Brown, J. A., Terashima, K. H., Burggren, A. C., Ercoli, L. M., Miller, K. J., Small, G. W., et al. (2011). Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proceedings of the National Academy of Sciences USA [in press]Google Scholar
  12. Bunce, D., Fratiglioni, L., Small, B. J., Winblad, B., & Backman, L. (2004). APOE and cognitive decline in preclinical Alzheimer disease and non-demented aging. Neurology, 63(5), 816–821.PubMedCrossRefGoogle Scholar
  13. Burggren, A. C., Zeineh, M. M., Ekstrom, A. D., Braskie, M. N., Thompson, P. M., Small, G. W., et al. (2008). Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers. NeuroImage, 41(4), 1177–1183.PubMedCrossRefGoogle Scholar
  14. Caselli, R. J., Reiman, E. M., Locke, D. E., Hutton, M. L., Hentz, J. G., Hoffman-Snyder, C., et al. (2007). Cognitive domain decline in healthy apolipoprotein E epsilon4 homozygotes before the diagnosis of mild cognitive impairment. Archives of Neurology, 64(9), 1306–1311.PubMedCrossRefGoogle Scholar
  15. Caselli, R. J., Dueck, A. C., Locke, D. E., Sabbagh, M. N., Ahern, G. L., Rapcsak, S. Z., et al. (2011). Cerebrovascular risk factors and preclinical memory decline in healthy APOE epsilon4 homozygotes. Neurology, 76(12), 1078–1084.PubMedCrossRefGoogle Scholar
  16. Chapman, J., Korczyn, A. D., Karussis, D. M., & Michaelson, D. M. (2001). The effects of APOE genotype on age at onset and progression of neurodegenerative diseases. Neurology, 57(8), 1482–1485.PubMedCrossRefGoogle Scholar
  17. Chen, K., Reiman, E. M., Alexander, G. E., Caselli, R. J., Gerkin, R., Bandy, D., et al. (2007). Correlations between apolipoprotein E epsilon4 gene dose and whole brain atrophy rates. The American Journal of Psychiatry, 164(6), 916–921.PubMedCrossRefGoogle Scholar
  18. Cherbuin, N., Anstey, K. J., Sachdev, P. S., Maller, J. J., Meslin, C., Mack, H. A., et al. (2008). Total and regional gray matter volume is not related to APOE*E4 status in a community sample of middle-aged individuals. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63(5), 501–504.PubMedCrossRefGoogle Scholar
  19. Cupples, L. A., Farrer, L. A., Sadovnick, A. D., Relkin, N., Whitehouse, P., & Green, R. C. (2004). Estimating risk curves for first-degree relatives of patients with Alzheimer's disease: the REVEAL study. Genetics in Medicine, 6(4), 192–196.PubMedCrossRefGoogle Scholar
  20. Daw, E. W., Payami, H., Nemens, E. J., Nochlin, D., Bird, T. D., Schellenberg, G. D., et al. (2000). The number of trait loci in late-onset Alzheimer disease. American Journal of Human Genetics, 66(1), 196–204.PubMedCrossRefGoogle Scholar
  21. Donix, M., Burggren, A., Suthana, N., Siddarth, P., Ekstrom, A., Krupa, A., et al. (2010a). Family history of Alzheimer’s disease and hippocampal structure in healthy people. The American Journal of Psychiatry, 167(11), 1399–1406.PubMedCrossRefGoogle Scholar
  22. Donix, M., Burggren, A. C., Suthana, N. A., Siddarth, P., Ekstrom, A. D., Krupa, A. K., et al. (2010b). Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism. NeuroImage, 53, 37–43.PubMedCrossRefGoogle Scholar
  23. Donix, M., Ercoli, L. M., Siddarth, P., Brown, J. A., Martin-Harris, L., Burggren, A. C., et al. (2011). Influence of Alzheimer disease family history and genetic risk on cognitive performance in healthy middle-aged and older people. American Journal of Geriatric Psychiatry [in press]Google Scholar
  24. Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurology, 6(8), 734–746.PubMedCrossRefGoogle Scholar
  25. During, E. H., Osorio, R. S., Elahi, F. M., Mosconi, L., & de Leon, M. J. (2011). The concept of FDG-PET endophenotype in Alzheimer's disease. Neurological Science, 32(4), 559–569.CrossRefGoogle Scholar
  26. Ekstrom, A. (2010). How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. Brain Research Reviews, 62(2), 233–244.PubMedCrossRefGoogle Scholar
  27. Elosua, R., Ordovas, J. M., Cupples, L. A., Fox, C. S., Polak, J. F., Wolf, P. A., et al. (2004). Association of APOE genotype with carotid atherosclerosis in men and women: the Framingham Heart Study. Journal of Lipid Research, 45(10), 1868–1875.PubMedCrossRefGoogle Scholar
  28. Espeseth, T., Westlye, L. T., Fjell, A. M., Walhovd, K. B., Rootwelt, H., & Reinvang, I. (2008). Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E epsilon 4. Neurobiology of Aging, 29(3), 329–340.PubMedCrossRefGoogle Scholar
  29. Filbey, F. M., Slack, K. J., Sunderland, T. P., & Cohen, R. M. (2006). Functional magnetic resonance imaging and magnetoencephalography differences associated with APOEepsilon4 in young healthy adults. Neuroreport, 17(15), 1585–1590.PubMedCrossRefGoogle Scholar
  30. Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7209–7214.PubMedCrossRefGoogle Scholar
  31. Filippini, N., Ebmeier, K. P., MacIntosh, B. J., Trachtenberg, A. J., Frisoni, G. B., Wilcock, G. K., et al. (2011). Differential effects of the APOE genotype on brain function across the lifespan. NeuroImage, 54(1), 602–610.PubMedCrossRefGoogle Scholar
  32. Fleisher, A. S., Houston, W. S., Eyler, L. T., Frye, S., Jenkins, C., Thal, L. J., et al. (2005). Identification of Alzheimer disease risk by functional magnetic resonance imaging. Archives of Neurology, 62(12), 1881–1888.PubMedCrossRefGoogle Scholar
  33. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-Mental-State: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.PubMedCrossRefGoogle Scholar
  34. Fratiglioni, L., Ahlbom, A., Viitanen, M., & Winblad, B. (1993). Risk factors for late-onset Alzheimer's disease: a population-based, case-control study. Annals of Neurology, 33(3), 258–266.PubMedCrossRefGoogle Scholar
  35. Gatz, M., Reynolds, C. A., Fratiglioni, L., Johansson, B., Mortimer, J. A., Berg, S., et al. (2006). Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63(2), 168–174.PubMedCrossRefGoogle Scholar
  36. Glodzik-Sobanska, L., Pirraglia, E., Brys, M., de Santi, S., Mosconi, L., Rich, K. E., et al. (2009). The effects of normal aging and ApoE genotype on the levels of CSF biomarkers for Alzheimer's disease. Neurobiology of Aging, 30(5), 672–681.PubMedCrossRefGoogle Scholar
  37. Gold, B. T., Powell, D. K., Andersen, A. H., & Smith, C. D. (2010). Alterations in multiple measures of white matter integrity in normal women at high risk for Alzheimer's disease. NeuroImage, 52(4), 1487–1494.PubMedCrossRefGoogle Scholar
  38. Harold, D., Abraham, R., Hollingworth, P., Sims, R., Gerrish, A., Hamshere, M. L., et al. (2009). Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 41(10), 1088–1093.PubMedCrossRefGoogle Scholar
  39. Hayden, K. M., Zandi, P. P., West, N. A., Tschanz, J. T., Norton, M. C., Corcoran, C., et al. (2009). Effects of family history and apolipoprotein E epsilon4 status on cognitive decline in the absence of Alzheimer dementia: the Cache County Study. Archives of Neurology, 66(11), 1378–1383.PubMedCrossRefGoogle Scholar
  40. Hebert, L. E., Beckett, L. A., Scherr, P. A., & Evans, D. A. (2001). Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Disease and Associated Disorders, 15(4), 169–173.PubMedCrossRefGoogle Scholar
  41. Heise, V., Filippini, N., Ebmeier, K. P., & Mackay, C. E. (2011). The APOE varepsilon4 allele modulates brain white matter integrity in healthy adults. Molecular Psychiatry, 16(9), 908–916.PubMedCrossRefGoogle Scholar
  42. Holmes, C., Boche, D., Wilkinson, D., Yadegarfar, G., Hopkins, V., Bayer, A., et al. (2008). Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet, 372(9634), 216–223.PubMedCrossRefGoogle Scholar
  43. Honea, R. A., Vidoni, E., Harsha, A., & Burns, J. M. (2009). Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. Journal of Alzheimer's Disease, 18(3), 553–564.PubMedGoogle Scholar
  44. Honea, R. A., Swerdlow, R. H., Vidoni, E. D., Goodwin, J., & Burns, J. M. (2010). Reduced gray matter volume in normal adults with a maternal family history of Alzheimer disease. Neurology, 74(2), 113–120.PubMedCrossRefGoogle Scholar
  45. Honea, R. A., Swerdlow, R. H., Vidoni, E. D., & Burns, J. M. (2011). Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease. Neurology, 76(9), 822–829.PubMedCrossRefGoogle Scholar
  46. Jak, A. J., Houston, W. S., Nagel, B. J., Corey-Bloom, J., & Bondi, M. W. (2007). Differential cross-sectional and longitudinal impact of APOE genotype on hippocampal volumes in nondemented older adults. Dementia and Geriatric Cognitive Disorders, 23(6), 382–389.PubMedCrossRefGoogle Scholar
  47. Jarvik, G. P., & Wijsman, E. M. (1994). Alzheimer's disease and the family effect. Nature Genetics, 8(2), 115.PubMedCrossRefGoogle Scholar
  48. Johnson, S. C., Schmitz, T. W., Trivedi, M. A., Ries, M. L., Torgerson, B. M., Carlsson, C. M., et al. (2006). The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. Journal of Neuroscience, 26(22), 6069–6076.PubMedCrossRefGoogle Scholar
  49. Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., et al. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nature Genetics, 41(10), 1094–1099.PubMedCrossRefGoogle Scholar
  50. Langbaum, J. B., Chen, K., Launer, L. J., Fleisher, A. S., Lee, W., Liu, X., et al. (2011). Blood pressure is associated with higher brain amyloid burden and lower glucose metabolism in healthy late middle-age persons. Neurobiology of Aging [in press]Google Scholar
  51. La Rue, A., Hermann, B., Jones, J. E., Johnson, S., Asthana, S., & Sager, M. A. (2008). Effect of parental family history of Alzheimer's disease on serial position profiles. Alzheimer's & Dementia, 4(4), 285–290.CrossRefGoogle Scholar
  52. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795.PubMedCrossRefGoogle Scholar
  53. Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Van Broeckhoven, C., et al. (2006). Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain, 129(Pt 5), 1240–1248.PubMedCrossRefGoogle Scholar
  54. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.PubMedCrossRefGoogle Scholar
  55. Luchsinger, J. A. (2008). Adiposity, hyperinsulinemia, diabetes and Alzheimer's disease: an epidemiological perspective. European Journal of Pharmacology, 585(1), 119–129.PubMedCrossRefGoogle Scholar
  56. Lunetta, K. L., Erlich, P. M., Cuenco, K. T., Cupples, L. A., Green, R. C., Farrer, L. A., et al. (2007). Heritability of magnetic resonance imaging (MRI) traits in Alzheimer disease cases and their siblings in the MIRAGE study. Alzheimer Disease and Associated Disorders, 21(2), 85–91.PubMedCrossRefGoogle Scholar
  57. Mahley, R. W., Weisgraber, K. H., & Huang, Y. (2006). Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 103(15), 5644–5651.PubMedCrossRefGoogle Scholar
  58. Mastroeni, D., Grover, A., Delvaux, E., Whiteside, C., Coleman, P. D., & Rogers, J. (2011). Epigenetic mechanisms in Alzheimer's disease. Neurobiology of Aging, 32(7), 1161–1180.PubMedCrossRefGoogle Scholar
  59. Mielke, M. M., Leoutsakos, J. M., Tschanz, J. T., Green, R. C., Tripodis, Y., Corcoran, C. D., et al. (2011). Interaction between vascular factors and the APOE epsilon4 allele in predicting rate of progression in Alzheimer's disease. Journal of Alzheimer's Disease, 26(1), 127–134.PubMedGoogle Scholar
  60. Mosconi, L., Brys, M., Switalski, R., Mistur, R., Glodzik, L., Pirraglia, E., et al. (2007). Maternal family history of Alzheimer's disease predisposes to reduced brain glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 19067–19072.PubMedCrossRefGoogle Scholar
  61. Mosconi, L., Mistur, R., Switalski, R., Brys, M., Glodzik, L., Rich, K., et al. (2009). Declining brain glucose metabolism in normal individuals with a maternal history of Alzheimer disease. Neurology, 72(6), 513–520.PubMedCrossRefGoogle Scholar
  62. Mosconi, L., Glodzik, L., Mistur, R., McHugh, P., Rich, K. E., Javier, E., et al. (2010). Oxidative stress and amyloid-beta pathology in normal individuals with a maternal history of Alzheimer's. Biological Psychiatry, 68(10), 913–921.PubMedCrossRefGoogle Scholar
  63. Mosconi, L., Rinne, J. O., Tsui, W. H., Berti, V., Li, Y., Wang, H., et al. (2010). Increased fibrillar amyloid-{beta} burden in normal individuals with a family history of late-onset Alzheimer's. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 5949–5954.PubMedCrossRefGoogle Scholar
  64. Mosconi, L., Tsui, W., Murray, J., McHugh, P., Li, Y., Williams, S., et al. (2011). Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer's disease. Neurobiology of Aging [in press]Google Scholar
  65. Mount, C., & Downton, C. (2006). Alzheimer disease: progress or profit? Nature Medicine, 12(7), 780–784.PubMedCrossRefGoogle Scholar
  66. Mueller, S. G., Schuff, N., Raptentsetsang, S., Elman, J., & Weiner, M. W. (2008). Selective effect of Apo e4 on CA3 and dentate in normal aging and Alzheimer's disease using high resolution MRI at 4T. NeuroImage, 42(1), 42–48.PubMedCrossRefGoogle Scholar
  67. Murrell, J., Ghetti, B., Cochran, E., Macias-Islas, M. A., Medina, L., Varpetian, A., et al. (2006). The A431E mutation in PSEN1 causing familial Alzheimer's disease originating in Jalisco State, Mexico: an additional fifteen families. Neurogenetics, 7(4), 277–279.PubMedCrossRefGoogle Scholar
  68. Nierenberg, J., Pomara, N., Hoptman, M. J., Sidtis, J. J., Ardekani, B. A., & Lim, K. O. (2005). Abnormal white matter integrity in healthy apolipoprotein E epsilon4 carriers. Neuroreport, 16(12), 1369–1372.PubMedCrossRefGoogle Scholar
  69. Ohm, T. G., Muller, H., Braak, H., & Bohl, J. (1995). Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience, 64(1), 209–217.PubMedCrossRefGoogle Scholar
  70. Persson, J., Lind, J., Larsson, A., Ingvar, M., Cruts, M., Van Broeckhoven, C., et al. (2006). Altered brain white matter integrity in healthy carriers of the APOE epsilon4 allele: a risk for AD? Neurology, 66(7), 1029–1033.PubMedCrossRefGoogle Scholar
  71. Popp, J., Lewczuk, P., Frommann, I., Kolsch, H., Kornhuber, J., Maier, W., et al. (2010). Cerebrospinal fluid markers for Alzheimer's disease over the lifespan: effects of age and the APOEepsilon4 genotype. Journal of Alzheimer's Disease, 22(2), 459–468.PubMedGoogle Scholar
  72. Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., & Frost, J. (2001). Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3334–3339.PubMedCrossRefGoogle Scholar
  73. Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., et al. (2004). Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proceedings of the National Academy of Sciences of the United States of America, 101(1), 284–289.PubMedCrossRefGoogle Scholar
  74. Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., et al. (2005). Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8299–8302.PubMedCrossRefGoogle Scholar
  75. Reiman, E. M., Chen, K., Liu, X., Bandy, D., Yu, M., Lee, W., et al. (2009). Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6820–6825.PubMedCrossRefGoogle Scholar
  76. Ringman, J. M., Medina, L. D., Braskie, M., Rodriguez-Agudelo, Y., Geschwind, D. H., Macias-Islas, M. A., et al. (2011). Effects of risk genes on BOLD activation in presymptomatic carriers of familial Alzheimer's disease mutations during a novelty encoding task. Cerebral Cortex, 21(4), 877–883.PubMedCrossRefGoogle Scholar
  77. Robinson, G. E., Fernald, R. D., & Clayton, D. F. (2008). Genes and social behavior. Science, 322(5903), 896–900.PubMedCrossRefGoogle Scholar
  78. Ryan, L., Walther, K., Bendlin, B. B., Lue, L. F., Walker, D. G., & Glisky, E. L. (2011). Age-related differences in white matter integrity and cognitive function are related to APOE status. NeuroImage, 54(2), 1565–1577.PubMedCrossRefGoogle Scholar
  79. Saunders, A. M. (2000). Apolipoprotein E and Alzheimer disease: an update on genetic and functional analyses. Journal of Neuropathology and Experimental Neurology, 59(9), 751–758.PubMedGoogle Scholar
  80. Seshadri, S., Fitzpatrick, A. L., Ikram, M. A., DeStefano, A. L., Gudnason, V., Boada, M., et al. (2010). Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA: The Journal of the American Medical Association, 303(18), 1832–1840.CrossRefGoogle Scholar
  81. Shaw, P., Lerch, J. P., Pruessner, J. C., Taylor, K. N., Rose, A. B., Greenstein, D., et al. (2007). Cortical morphology in children and adolescents with different apolipoprotein E gene polymorphisms: an observational study. Lancet Neurology, 6(6), 494–500.PubMedCrossRefGoogle Scholar
  82. Small, B. J., Rosnick, C. B., Fratiglioni, L., & Backman, L. (2004). Apolipoprotein E and cognitive performance: a meta-analysis. Psychology and Aging, 19(4), 592–600.PubMedCrossRefGoogle Scholar
  83. Small, G. W., Siddarth, P., Burggren, A. C., Kepe, V., Ercoli, L. M., Miller, K. J., et al. (2009). Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Archives of General Psychiatry, 66(1), 81–87.PubMedCrossRefGoogle Scholar
  84. Smith, C. D., Chebrolu, H., Andersen, A. H., Powell, D. A., Lovell, M. A., Xiong, S., et al. (2010). White matter diffusion alterations in normal women at risk of Alzheimer's disease. Neurobiology of Aging, 31(7), 1122–1131.PubMedCrossRefGoogle Scholar
  85. Sunderland, T., Mirza, N., Putnam, K. T., Linker, G., Bhupali, D., Durham, R., et al. (2004). Cerebrospinal fluid beta-amyloid1-42 and tau in control subjects at risk for Alzheimer's disease: the effect of APOE epsilon4 allele. Biological Psychiatry, 56(9), 670–676.PubMedCrossRefGoogle Scholar
  86. Teter, B. (2004). ApoE-dependent plasticity in Alzheimer's disease. Journal of Molecular Neuroscience, 23(3), 167–179.PubMedCrossRefGoogle Scholar
  87. Trivedi, M. A., Schmitz, T. W., Ries, M. L., Torgerson, B. M., Sager, M. A., Hermann, B. P., et al. (2006). Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: a cross-sectional study. BMC Medicine, 4, 1–14.PubMedCrossRefGoogle Scholar
  88. Trivedi, M. A., Schmitz, T. W., Ries, M. L., Hess, T. M., Fitzgerald, M. E., Atwood, C. S., et al. (2008). fMRI activation during episodic encoding and metacognitive appraisal across the lifespan: risk factors for Alzheimer's disease. Neuropsychologia, 46(6), 1667–1678.PubMedCrossRefGoogle Scholar
  89. Tuminello, E. R., & Han, S. D. (2011). The apolipoprotein e antagonistic pleiotropy hypothesis: review and recommendations. Int J Alzheimers Dis, 2011, 726197.PubMedGoogle Scholar
  90. van Duijn, C. M., Clayton, D., Chandra, V., Fratiglioni, L., Graves, A. B., Heyman, A., et al. (1991). Familial aggregation of Alzheimer's disease and related disorders: a collaborative re-analysis of case-control studies. International Journal of Epidemiology, 20(Suppl 2), S13–S20.PubMedGoogle Scholar
  91. van Duijn, C. M., de Knijff, P., Cruts, M., Wehnert, A., Havekes, L. M., Hofman, A., et al. (1994). Apolipoprotein E4 allele in a population-based study of early-onset Alzheimer's disease. Nature Genetics, 7(1), 74–78.PubMedCrossRefGoogle Scholar
  92. van Exel, E., Eikelenboom, P., Comijs, H., Frolich, M., Smit, J. H., Stek, M. L., et al. (2009). Vascular factors and markers of inflammation in offspring with a parental history of late-onset Alzheimer disease. Archives of General Psychiatry, 66(11), 1263–1270.PubMedCrossRefGoogle Scholar
  93. Wisdom, N. M., Callahan, J. L., & Hawkins, K. A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis. Neurobiology of Aging, 32(1), 63–74.PubMedCrossRefGoogle Scholar
  94. Wishart, H. A., Saykin, A. J., Rabin, L. A., Santulli, R. B., Flashman, L. A., Guerin, S. J., et al. (2006). Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. The American Journal of Psychiatry, 163(9), 1603–1610.PubMedCrossRefGoogle Scholar
  95. Wisniewski, T., & Boutajangout, A. (2010). Vaccination as a therapeutic approach to Alzheimer's disease. The Mount Sinai Journal of Medicine, 77(1), 17–31.CrossRefGoogle Scholar
  96. Xu, G., McLaren, D. G., Ries, M. L., Fitzgerald, M. E., Bendlin, B. B., Rowley, H. A., et al. (2009). The influence of parental history of Alzheimer's disease and apolipoprotein E epsilon4 on the BOLD signal during recognition memory. Brain, 132(Pt 2), 383–391.PubMedGoogle Scholar
  97. Yip, A. G., McKee, A. C., Green, R. C., Wells, J., Young, H., Cupples, L. A., et al. (2005). APOE, vascular pathology, and the AD brain. Neurology, 65(2), 259–265.PubMedCrossRefGoogle Scholar
  98. Zintl, M., Schmitz, G., Hajak, G., & Klunemann, H. H. (2009). ApoE genotype and family history in patients with dementia and cognitively intact spousal controls. American Journal of Alzheimer's Disease and Other Dementias, 24(4), 349–352.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Markus Donix
    • 1
    • 2
  • Gary W. Small
    • 4
    • 6
  • Susan Y. Bookheimer
    • 3
    • 4
    • 5
  1. 1.Department of Psychiatry and PsychotherapyUniversitätsklinikum Carl Gustav Carus, Technische Universität DresdenDresdenGermany
  2. 2.DZNE, German Center for Neurodegenerative DiseasesDresdenGermany
  3. 3.David Geffen School of Medicine at UCLA, Center for Cognitive NeurosciencesSemel InstituteLos AngelesUSA
  4. 4.David Geffen School of Medicine at UCLA, Department of Psychiatry and Biobehavioral SciencesSemel InstituteLos AngelesUSA
  5. 5.Department of PsychologyDavid Geffen School of Medicine at UCLALos AngelesUSA
  6. 6.UCLA Longevity CenterLos AngelesUSA

Personalised recommendations