Neuropsychology Review

, Volume 20, Issue 4, pp 414–429 | Cite as

Early Institutionalization: Neurobiological Consequences and Genetic Modifiers

  • Margaret Sheridan
  • Stacy Drury
  • Kate McLaughlin
  • Alisa Almas


Children raised in the profound deprivation associated with institutionalization are at elevated risk for negative outcomes across a host of social and cognitive domains. This risk appears to be mitigated by early foster care or adoption into a family setting. Although pervasive developmental problems have been noted in a substantial proportion of previously institutionalized children, marked variation exists in the nature and severity of these deficits. Increasing evidence suggests that institutional deprivation impacts the developing brain, potentially underlying the wide range of outcomes with which it is associated. In the current review we examine the neural consequences of institutionalization and genetic factors associated with differences in outcome in an effort to characterize the consequences of early deprivation at a neurobiological level. Although the effects of institutional deprivation have been studied for more than 50 years much remains unanswered regarding the pathways through which institutionalization impacts child development. Through a more complete and nuanced assessment of the neural correlates of exposure and recovery as well as a better understanding of the individual factors involved we will be better able to delineate the impact of early adversity in the setting of severe social deprivation.


BEIP Institutionalization Romania Developmental psychopathology Child development Neurodevelopment Genetics Gene by environment interaction 


  1. Albers, L. H., Johnson, D. E., Hostetter, M. K., Iverson, S., & Miller, L. C. (1997). Health of children adopted from the former Soviet Union and Eastern Europe. Comparison with preadoptive medical records. JAMA: The Journal of the American Medical Association, 278(11), 922–924.CrossRefGoogle Scholar
  2. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders, 4th Edition (DSM-IV). Washington, DC: American Psychiatric.Google Scholar
  3. Aragona, B., Liu, Y., et al. (2003). A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. The Journal of Neuroscience, 23(8), 3483–3490.PubMedGoogle Scholar
  4. Babiloni, C., Frisoni, G., Steriade, M., Bresciani, L., Binetti, G., Del Percio, C., et al. (2006). Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer’s disease. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 117(5), 1113–1129. doi: 10.1016/j.clinph.2006.01.020.Google Scholar
  5. Barr, C., Newman, T., et al. (2004). Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates. Archives of General Psychiatry, 61, 1146–1152.PubMedCrossRefGoogle Scholar
  6. Barry, R. J., Clarke, A. R., & Johnstone, S. J. (2003). A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clinical Neurophysiology, 114, 171–183.PubMedCrossRefGoogle Scholar
  7. Barry, R. J., Clarke, A. R., Johnstone, S. J., McCarthy, R., & Selikowitz, M. (2009). Electroencephalogram θ/β ratio and arousal in attention-deficit/hyperactivity disorder: Evidence of independent processes. Biological Psychiatry, 66, 398–40.PubMedCrossRefGoogle Scholar
  8. Bayley, N. (1993). Bayley scales of infant development. New York: Psychological Corp.Google Scholar
  9. Beckett, C., Maughan, B., Rutter, M., Castle, J., Colvert, E., Groothues, C., et al. (2006). Do the effects of early severe deprivation on cognition persist into early adolescence? Findings from the English and Romanian adoptees study. Child Development, 77, 696–711.PubMedCrossRefGoogle Scholar
  10. Bell, M. A. (2002). Power changes in infant EEG frequency bands during a spatial working memory task. Psychophysiology, 39(4), 450–458. doi: 10.1017.S0048577201393174.PubMedCrossRefGoogle Scholar
  11. Bell, M. A., & Wolfe, C. D. (2007). Changes in brain functioning from infancy to early childhood: evidence from EEG power and coherence working memory tasks. Developmental Neuropsychology, 31(1), 21–38. doi: 10.1207/s15326942dn3101_2.PubMedCrossRefGoogle Scholar
  12. Bellgrove, M. A., Hawi, Z., Kirley, A., Gill, M., & Robertson, I. H. (2005). Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia, 43(13), 1847–1857. doi: 10.1016/j.neuropsychologia.2005.03.011.Google Scholar
  13. Bellgrove, M. A., & Mattingley, J. B. (2008). Molecular genetics of attention. Annals of the New York Academy of Sciences, 1129, 200–212. doi: 10.1196/annals.1417.013.Google Scholar
  14. Benoit, T. C., Jocelyn, L. J., Moddemann, D. M., & Embree, J. E. (1996). Romanian adoption. The Manitoba experience. Archives of Pediatrics & Adolescent Medicine, 150(12), 1278–1282.Google Scholar
  15. Berton, O., McClung, C., et al. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311, 864–868.PubMedCrossRefGoogle Scholar
  16. Binder, E., Bradley, R., et al. (2008). Association of FKBP5 Polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA, 11, 1291–1305.CrossRefGoogle Scholar
  17. Boris, N. W., Hinshaw-Fuselier, S. S., et al. (2004). Comparing criteria for attachment disorders: establishing reliability and validity in high-risk samples. Journal of the American Academy of Child & Adolescent Psychiatry, 43(5), 568–577.CrossRefGoogle Scholar
  18. Bos, K. J., Zeanah, C. H., Smyke, A. T., Fox, N. A., & Nelson, C. A. (2010). Stereotypies in children with a history of early institutional care. Archives of Pediatrics & Adolescent Medicine, 164(5), 406–411. doi: 10.1001/archpediatrics.2010.47 CrossRefGoogle Scholar
  19. Burdick, K., Funke, B., et al. (2007). COMT genotype increases risk for bipolar I disorder and influences neurocognitive performance. Bipolar Disorder, 9, 370–376.CrossRefGoogle Scholar
  20. Caspi, A., Sugden, K., et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.PubMedCrossRefGoogle Scholar
  21. Caspi, A., Hariri, A., et al. (2010). Genetic sensitivity to the environment: the care of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry Aia: 1–19.Google Scholar
  22. Chanraud, S., Zahr, N. M., Sullivan, E. V., & Pfefferbaum, A. (2010). MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychology Review, 20, 209–225.PubMedCrossRefGoogle Scholar
  23. Chisholm, K. (1998). A three year follow-up of attachment and indiscriminate friendliness in children adopted from Romanian orphanages. Child Development, 69(4), 1092–1096.PubMedGoogle Scholar
  24. Chugani, H. T., Behen, M. E., Muzik, O., Juhász, C., Nagy, F., & Chugani, D. C. (2001). Local brain functional activity following early deprivation: a study of postinstitutionalized Romanian orphans. NeuroImage, 14(6), 1290–1301. doi: 10.1006/nimg.2001.0917.PubMedCrossRefGoogle Scholar
  25. Ciliax, B., Heilman, C., et al. (1995). The dopamine transporter: Immunochemical characterization and localization in brain. Journal of Neuroscience, 15, 1714–1723.PubMedGoogle Scholar
  26. Clarke, A. R., Barry, R. J., McCarthy, R., & Selikowitz, M. (2001). Age and sex effects in the EEG: differences in two subtypes of attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 112, 815–826.PubMedCrossRefGoogle Scholar
  27. Cyander, M. S., & Frost, B. J. (1999). Mechanisms of brain development: Neuronal sculpting by the physical and social environment. In D. P. Keating & C. Hertzman (Eds.), Developmental health and the wealth of nations: Social, biological, and educational dynamics. New York: Guilford.Google Scholar
  28. de Haan, M., & Nelson, C. A. (1997). Recognition of the mother’s face by six-month-old infants: a neurobehavioral study. Child Development, 68(2), 187–210.PubMedCrossRefGoogle Scholar
  29. Dennis, W., & Najarian, P. (1957). Infant development under environmental handicap. Psychological Monographs, 71(7), 13.Google Scholar
  30. Drury, S., Theall, K., et al. (2010). Modification of depression by the COMT val 158met polymorphisms in children exposed to early social deprivation. Child Abuse and Neglect.Google Scholar
  31. Egan, M., Kojima, M., et al. (2003). The BDNF val66met polymorphisms affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257–269.PubMedCrossRefGoogle Scholar
  32. Egger, H. L., Ascher, B. H., & Angold, A. (1999). The preschool age psychiatric assessment: Version 1.1. Durham: Duke University Medical Center.Google Scholar
  33. Egger, H., Erkanli, A., et al. (2006). Test-retest reliability of the Preschool Age Psychiatric Assessment (PAPA). The Journal of the American Academy of Child and Adolesc Psychiatry, 45, 538–549.CrossRefGoogle Scholar
  34. Eluvathingal, T. J., Chugani, H. T., Behen, M. E., Juhász, C., Muzik, O., Maqbool, M., et al. (2006). Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics, 117(6), 2093–2100. doi: 10.1542/peds.2005-1727.PubMedCrossRefGoogle Scholar
  35. Fergusson, D. M., Horwood, L. J., & Lynskey, M. T. (1993). Prevalence and comorbidity of DSM-III-R diagnoses in a birth cohort of 15 year olds. Journal of the American Academy of Child & Adolescent Psychiatry, 32, 1127–1134.CrossRefGoogle Scholar
  36. Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 28–40. doi: 10.1111/j.1467-8624.2009.01380.x.PubMedCrossRefGoogle Scholar
  37. Fox, N. F., Almas, A. N., Degnan, K. D., Nelson, C. A., & Zeanah, C. H. (2010). The effects of severe psychosocial deprivation on cognitive development at 8 years of age: Findings from the Bucharest Early Intervention Project. Manuscript submitted for publicationGoogle Scholar
  38. Funke, B., Malhotra, A., et al. (2005). COMT genetic variation confers risk for psychotic and affective disorders: a case control study. Behavior Brain Function, 1, 19.CrossRefGoogle Scholar
  39. Garris, P., & Wightman, R. (1994). Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetric study. Journal of Neuroscience, 14, 442–450.PubMedGoogle Scholar
  40. Gauthier, I., & Nelson, C. A. (2001). The development of face expertise. Current Opinion in Neurobiology, 11(2), 219–224.PubMedCrossRefGoogle Scholar
  41. Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., et al. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex (New York, N.Y.: 1991), 6(4), 551–560.CrossRefGoogle Scholar
  42. Gogos, J., Morgan, M., et al. (1998). Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proceedings of the National Academy of Science, 95, 9991–9996.CrossRefGoogle Scholar
  43. Grabe, H., Spitzer, C., et al. (2009). Serotonin transporter gene (SLC6A4) promoter polymorphism and the susceptibility to posttraumatic stress disorder in the general population. American Journal of Psychiatry, 166(8), 926–933.PubMedCrossRefGoogle Scholar
  44. Grady, D., Chi, H., et al. (2003). High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Molecular Psychiatry, 8, 536–645.PubMedCrossRefGoogle Scholar
  45. Guillin, O., Diaz, J., et al. (2001). BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature, 411(6833), 86–89.PubMedCrossRefGoogle Scholar
  46. Guldberg, H., & Marsden, C. (1975). Catechol-O-methyl transferase: pharmacological aspects and physiological role. Pharmacological Reviews, 27, 135–206.PubMedGoogle Scholar
  47. Gunnar, M. R., van Dulmen, M. H. M., & The International Adoption Project Team. (2007). Behavior problems in postinstitutionalized internationally adopted children. Development and Psychopathology, 19, 129–148.PubMedCrossRefGoogle Scholar
  48. Gunthert, K. C., Conner, T. S., et al. (2007). Serotonin transporter gene polymorphism (5-httlpr) and anxiety reactivity in daily life: a daily process approach to gene-environment interaction. Psychosomatic Medicine, 69, 762–768.PubMedCrossRefGoogle Scholar
  49. Heinz, A., Goldman, D., Jones, D. W., Palmour, R., Hommer, D., Gorey, J. G., Lee, K. S., et al. (2000). Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 22(2), 133–139. doi: 10.1016/S0893-133X(99)00099-8
  50. Hodges, J., & Tizard, B. (1989). Social and family relationships of ex-institutional adolescents. Journal of Child Psychology and Pschiatry, 30, 77–97.CrossRefGoogle Scholar
  51. Hoksbergen, R. A., ter Laak, J., van Dijkum, C., Rijk, S., Rijk, K., & Stoutjesdijk, F. (2003). Posttraumatic stress disorder in adopted children from Romania. American Journal of Orthopsychiatry, 73, 255–265.PubMedCrossRefGoogle Scholar
  52. Humphries, S. E., Talmud, P. J., et al. (2001). Apolipoprotein E4 and coronary heart disease in middle-aged men who smoke: a prospective study. The Lancet, 358(9276), 115–119.CrossRefGoogle Scholar
  53. Insel, T., & Fernald, R. (2004). How the brain processes social information: search for the social brain. Annual Review of Neuroscience, 27, 697–722.PubMedCrossRefGoogle Scholar
  54. Jacobsen, L. K., Staley, J. K., Zoghbi, S. S., Seibyl, J. P., Kosten, T. R., Innis, R. B., & Gelernter, J. (2000). Prediction of dopamine transporter binding availability by genotype: a preliminary report. The American Journal of Psychiatry, 157(10), 1700–1703.Google Scholar
  55. Johnson, D. E., Guthrie, D., Smyke, A. T., Koga, S. F., Fox, N. A., Zeanah, C. H., et al. (2010). Growth and associations between auxology, caregiving environment, and cognition in socially deprived Romanian children randomized to foster vs ongoing institutional care. Archives of Pediatrics & Adolescent Medicine, 164(6), 507–516. doi: 10.1001/archpediatrics.2010.56.CrossRefGoogle Scholar
  56. Karoum, F., Chrapusta, S., et al. (1994). 3-Methoxytryamine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. Journal of Neurochemistry, 63, 972–979.PubMedCrossRefGoogle Scholar
  57. Kaufman, J., Yang, B., et al. (2004). Social supports and serotonin transporter gene moderate depression in maltreated children. PNAS, 101, 17316–11721.PubMedCrossRefGoogle Scholar
  58. Kaufman, J., Yang, B., et al. (2006). Brain-derived neurotrophic factor–5-HTTLPR gene interactions and environmental modifiers of depression in children. Biological Psychiatry, 59, 673–680.PubMedCrossRefGoogle Scholar
  59. Kendler, K., Kuhn, J., et al. (2005). The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication. Archives of General Psychiatry, 62, 529–535.PubMedCrossRefGoogle Scholar
  60. Kilpatrick, D., Koenen, K., et al. (2007). The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults. American Journal of Psychiatry, 164, 1693–1699.PubMedCrossRefGoogle Scholar
  61. Kinsbourne, M. (1973). Minimal brain dysfunction as a neurodevelopmental lag. Annal of the New York Academy of Sciences, 205, 268–273.CrossRefGoogle Scholar
  62. Kreppner, J. M., O’Connor, T. G., & Rutter, M. (2001). Can inattention/overactivity be an institutional deprivation syndrome? Journal of Abnormal Child Psychology, 29(6), 513–528.PubMedCrossRefGoogle Scholar
  63. Kreppner, J. M., Rutter, M., Beckett, C., Castle, J., Colvert, E., Groothues, C., et al. (2007). Normality and impairment following profound early institutional deprivation: a longitudinal follow-up into early adolescence. Developmental Psychology, 43(4), 931–946. doi: 10.1037/0012-1649.43.4.93.PubMedCrossRefGoogle Scholar
  64. Kumsta, R., Stevens, S., et al. (2010). 5HTT genotype moderates the influence of early institutional deprivation on emotional problems in adolescence: evidence from and English and Romanian Adoptee (ERA) study. The Journal of Child Psychology and Psychiatry.Google Scholar
  65. Lachman, H., Papolos, D., et al. (1996). Human catechol-O-methyl transferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6, 243–250.PubMedCrossRefGoogle Scholar
  66. Lavigne, J. V., LeBailly, S. A., Hopkins, J., Gouze, K. R., & Binns, H. J. (2009). The prevalence of ADHD, ODD, depression, and anxiety in a community sample of 4-year-olds. Journal of Clinical Child & Adolescent Psychology, 38(3), 315. doi: 10.1080/15374410902851382.CrossRefGoogle Scholar
  67. Lesch, K., Bengel, D., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.PubMedCrossRefGoogle Scholar
  68. Lotta, T., Vidgren, J., et al. (1995). Kinetics of a soluble and membrane-bound catechol-O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry, 34, 4204–4210.CrossRefGoogle Scholar
  69. Lyons-Ruth, K., Bureau, J., et al. (2009). Socially indiscriminate attachment behavior in the strange situation: Convergent and discriminant validity in relation to caregiving risk, later behavior problems, and attachment insecurity. Development and Psychopathology, 21, 355–372.PubMedCrossRefGoogle Scholar
  70. MacLean, K. (2003). The impact of institutionalization on child development. Development and Psychopathology, 15(4), 853–884.PubMedCrossRefGoogle Scholar
  71. Mann, C. A., Lubar, J. F., Zimmerman, A. W., Miller, C. A., & Muenchen, R. A. (1992). Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: Controlled study with clinical implications. Pediatric Neurology, 8, 30–36.PubMedCrossRefGoogle Scholar
  72. Marshall, P. J., & Fox, N. A. (2004). A comparison of the electroencephalogram between institutionalized and community children in Romania. Journal of Cognitive Neuroscience, 16(8), 1327–1338.PubMedCrossRefGoogle Scholar
  73. Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 1199–1208. doi: 10.1016/S1388-2457(02)00163-3.PubMedCrossRefGoogle Scholar
  74. Marshall, P. J., Reeb, B. C., Fox, N. A., Nelson, C. A., & Zeanah, C. H. (2008). Effects of early intervention on EEG power and coherence in previously institutionalized children in Romania. Development and Psychopathology, 20(3), 861–880. doi: 10.1017/S09545794080004.PubMedCrossRefGoogle Scholar
  75. Martinez, D., Broft, A., & Laruelle, M. (2001). Imaging neurochemical endophenotypes: promises and pitfalls. Pharmacogenomics, 2(3), 223–237. doi: 10.1517/14622416.2.3.223.Google Scholar
  76. Massat, I., Souery, D., et al. (2005). Association between COMT (Val158Met) functional polymorphism and early onset in patients with major depressive disorder in a European multicenter genetic association study. Molecular Psychiatry, 10(6), 598–605.PubMedCrossRefGoogle Scholar
  77. Matsuura, M., Okubo, Y., Toru, M., Kojima, T., He, Y., Hou, Y., et al. (1993). A cross-national EEG study of children with emotional and behavioural problems: a WHO collaborative study in the western pacific region. Biological Psychiatry, 34, 52–58.CrossRefGoogle Scholar
  78. McClay, J., Fanous, A., et al. (2006). Catechol-o-methyltransferase and the clinical features of psychosis. American Journal of Medical Genetics, 141B, 935–938.PubMedCrossRefGoogle Scholar
  79. McLaughlin, K. A., Fox, N. A., Zeanah, C. H., Sheridan, M. A., Marshall, P., & Nelson, C. A. (2010). Delayed maturation in brain electrical activity partially explains the association between early environmental deprivation and symptoms of attention-deficit/hyperactivity disorder. Biological Psychiatry, 68(4), 329–336. doi: 10.1016/j.biopsych.2010.04.005.PubMedCrossRefGoogle Scholar
  80. Mehta, M. A., Golembo, N. I., Nosarti, C., Colvert, E., Mota, A., Williams, S. C. R., et al. (2009). Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian Adoptees study pilot. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 50(8), 943–951. doi: 10.1111/j.1469-7610.2009.02084.PubMedCrossRefGoogle Scholar
  81. Michelhaugh, S. K., Fiskerstrand, C., Lovejoy, E., Bannon, M. J., & Quinn, J. P. (2001). The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. Journal of Neurochemistry, 79(5), 1033–1038.Google Scholar
  82. Miller, L. C., & Hendrie, N. W. (2000). Health of children adopted from China. Pediatrics, 105(6), E76.Google Scholar
  83. Miller, L. C., Kiernan, M. T., Mathers, M. I., & Klein-Gitelman, M. (1995). Developmental and nutritional status of internationally adopted children. Archives of Pediatrics & Adolescent Medicine, 149(1), 40–44.Google Scholar
  84. Miller, L. C., Tseng, B., Tirella, L. G., Chan, W., & Feig, E. (2008). Health of children adopted from Ethiopia. Maternal and Child Health Journal, 12(5), 599–605. doi: 10.1007/s10995-007-0274-4
  85. Morishita, H., & Hensch, T. K. (2008). Critical period revisited: impact on vision. Current Opinion in Neurobiology, 18(1), 101–107. doi: 10.1016/j.conb.2008.05.009.PubMedCrossRefGoogle Scholar
  86. Moulson, M. C., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2009). Early adverse experiences and the neurobiology of facial emotion processing. Developmental Psychology, 45(1), 17–30. doi: 10.1037/a0014035.PubMedCrossRefGoogle Scholar
  87. Nelson, C. (2007). A neurobiological perspective on early human deprivation. Child Development Perspectives, 1(1), 13–18.CrossRefGoogle Scholar
  88. Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A. T., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: the Bucharest Early Intervention Project. Science (New York, N.Y.), 318(5858), 1937–1940. doi: 10.1126/science.1143921.Google Scholar
  89. O’Connor, T., & Rutter, M. (2000). Attachment disorder behavior following early severe deprivation: extension and longitudinal follow-up. Journal of the American Academy of Child & Adolescent Psychiatry, 39(6), 703.CrossRefGoogle Scholar
  90. O’Connor, T. G., Rutter, M., Beckett, C., Keaveney, L., & Kreppner, J. M. (2000). The effects of global severe privation on cognitive competence: extension and longitudinal follow-up. English and Romanian adoptees study team. Child Development, 71(2), 376–390.PubMedCrossRefGoogle Scholar
  91. O’hara, K., HNagai, M., et al. (1998). Low activity allele of catechol-o-methyltransferase gene and Japanese unipolar depression. Clinical Neuroscience, 9(7), 1305–1308.Google Scholar
  92. Parker, S. W., & Nelson, C. A. (2005a). An event-related potential study of the impact of institutional rearing on face recognition. Development and Psychopathology, 17(3), 621–639. doi: 10.1017/S0954579405050303.PubMedCrossRefGoogle Scholar
  93. Parker, S. W., & Nelson, C. A. (2005b). The impact of early institutional rearing on the ability to discriminate facial expressions of emotion: an event-related potential study. Child Development, 76(1), 54–72. doi: 10.1111/j.1467-8624.2005.00829.x.PubMedCrossRefGoogle Scholar
  94. Pérez-Edgar, K., Bar-Haim, Y., et al. (2010). Variations in the serotonin-transporter gene are associated with attention bias patterns to positive and negative emotion faces. Biological Psychology, 83(3), 269–271.PubMedCrossRefGoogle Scholar
  95. Pezawas, L., Meyer-Lindenberg, A., et al. (2005). 5-httlpr polymorphism impacts human cingulate-amygdala interactions: a genetic suceptibility mechanism for depression. Nature Neuroscience, 8, 828–834.PubMedCrossRefGoogle Scholar
  96. Pollak, S. D., Nelson, C. A., Schlaak, M. F., Roeber, B. J., Wewerka, S. S., Wiik, K. L., et al. (2010). Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Development, 81(1), 224–236. doi: 10.1111/j.1467-8624.2009.01391.x.PubMedCrossRefGoogle Scholar
  97. Rilling, J., Gutman, D., et al. (2002). A neural basis for social cooperation. 35, 395–405).Google Scholar
  98. Risch, N., Herrell, R., et al. (2009). Interaction between the serotonin transporter gene (5-httlpr), stressful life events and risk of depression: a Meta-analysis. JAMA, 301(23), 2462–2471.PubMedCrossRefGoogle Scholar
  99. Rossini, P. M., Del Percio, C., Pasqualetti, P., Cassetta, E., Binetti, G., Dal Forno, G., et al. (2006). Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience, 143(3), 793–803. doi: 10.1016/j.neuroscience.2006.08.049.PubMedCrossRefGoogle Scholar
  100. Rotondo, A., Mazzanti, C., et al. (2002). Catechol-o-methyltransferase, serotonin transporter, and tryptophan hydroxylase gene polymrophisms in bipolar disorder patients with and without comorbid panic disorder. American Journal of Psychiatry, 159(1), 23–29.PubMedCrossRefGoogle Scholar
  101. Rutter, M. (2010). Gene-environment interplay. Depression and Anxiety, 27, 1–4.PubMedCrossRefGoogle Scholar
  102. Rutter, M., & English Romanian Adoptees (ERA) Study Team. (1998). Developmental catch-up, and deficit, following adoption after severe global early privation. Journal of Child Psychology and Psychiatry, 39, 465–476.PubMedCrossRefGoogle Scholar
  103. Rutter, M., & Sonuga-Barke, E. J. (2010). X. Conclusions: overview of findings from the era study, inferences, and research implications. Monographs of the Society for Research in Child Development, 75(1), 212–229. doi: 10.1111/j.1540-5834.2010.00557.x.PubMedCrossRefGoogle Scholar
  104. Rutter, M., Andersen-Wood, L., Beckett, C., Bredenkamp, D., Castle, J., Groothues, C., Kreppner, J., et al. (1999). Quasi-autistic patterns following severe early global privation. English and Romanian Adoptees (ERA) Study Team. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 40(4), 537–549.PubMedCrossRefGoogle Scholar
  105. Rutter, M., Kreppner, J. M., O’Connor, T. G., & English Romanian Adoptees (ERA) Study Team. (2001). Specificity and heterogeneity in children’s responses to profound institutional privation. British Journal of Psychiatry, 17, 97–103.CrossRefGoogle Scholar
  106. Rutter, M., O’Connor, T. G., & English Romanian Adoptees (ERA) Study Team. (2004). Are there biological programming effects for psychological development? Findings from a study of Romanian adoptees. Developmental Psychology, 40, 81–94.PubMedCrossRefGoogle Scholar
  107. Rutter, M., Colvert, E., Kreppner, J., Beckett, C., Castle, J., Groothues, C., et al. (2007a). Early adolescent outcomes for institutionally-deprived and non-deprived adoptees. I: disinhibited attachment. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48(1), 17–30. doi: 10.1111/j.1469-7610.2006.01688.x.PubMedCrossRefGoogle Scholar
  108. Rutter, M., Beckett, C., et al. (2007b). Effects of profound early institutional deprivation: an overview of findings from a UK longitudinal study of Romanian adoptees. European Journal of Developmental Psychology, 4(3), 332–350.CrossRefGoogle Scholar
  109. Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J. P., Greenstein, D., et al. (2007). Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proceedings of the National Academy of Sciences, 104, 19649–19654.CrossRefGoogle Scholar
  110. Smyke, A., Dumitrescu, A., et al. (2002). Attachment disturbances in young children I: the caretaking casualty continuum. Journal of the American Academy of Child & Adolescent Psychiatry, 41(8), 972–982.CrossRefGoogle Scholar
  111. Smyke, A. T., Zeanah, C. H., Fox, N. A., & Nelson, C. A. (2009). A new model of foster care for young children: the Bucharest early intervention project. Child and Adolescent Psychiatric Clinics of North America, 18(3), 721–734. doi: 10.1016/j.chc.2009.03.003.PubMedCrossRefGoogle Scholar
  112. Stevens, S., Sonuga-Barke, E., et al. (2008). Inattention/overactivity following early severe institutional deprivation: presentation and associations in early adolescence. Journal of Abnormal Child Psychology, 36(3), 385–389.PubMedCrossRefGoogle Scholar
  113. Stevens, H., Leckman, J., et al. (2009). Risk and resilience: early manipulation of macaque social experience and persistent behavioral and neurophysiological outcomes. The Journal of the American Academy of Child and Adolescent Psychiatry, 48(2), 114–127.CrossRefGoogle Scholar
  114. Strathearn, L., Fonagy, P., et al. (2009). Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology, 34, 2655–2666.PubMedCrossRefGoogle Scholar
  115. Swain, J., Lorberbaum, J., et al. (2007). Brain basis of early parent-infant interactions: physiology, and in vivo functional neuroimaging studies. Journal of Child Psychology and Pschiatry, 48, 262–287.CrossRefGoogle Scholar
  116. Tottenham, N., & Sheridan, M. A. (2009). A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Frontiers in Human Neuroscience, 3, 68. doi: 10.3389/neuro.09.068.2009.Google Scholar
  117. Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., et al. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13(1), 46–61. doi: 10.1111/j.1467-7687.2009.00852.x.PubMedCrossRefGoogle Scholar
  118. Uher, R., & McGuffin, P. (2008). The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Molecular Psychiatry, 13, 131–146.PubMedCrossRefGoogle Scholar
  119. Valdés-Hernández, P. A., Ojeda-González, A., Martínez-Montes, E., Lage-Castellanos, A., Virués-Alba, T., Valdés-Urrutia, L., et al. (2010). White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm. NeuroImage, 49(3), 2328–2339. doi: 10.1016/j.neuroimage.2009.10.030.PubMedCrossRefGoogle Scholar
  120. van den Dries, L., Juffer, F. J., van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2010). Infants’ physical and cognitive development after international adoption from foster care or institutions in China. Journal of Developmental & Behavioral Pediatrics, 31, 144–150.CrossRefGoogle Scholar
  121. Van Ijzendoorn, M., & Bakermans-Kraneburg, M. (2006). DRD4-7 repeat polymorphism moderates the association between maternal unresolved loss or trauma and infant disorganization. Attachment and Human Development, 8(4), 291–307.PubMedCrossRefGoogle Scholar
  122. Van Ijzendoorn, M. H., Bakermans-Kranenburg, M. J., & Juffer, F. (2007). Plasticity of growth in height, weight, and head circumference: meta-analytic evidence of massive catch-up after international adoption. Journal of Developmental and Behavioral Pediatrics: JDBP, 28(4), 334–343. doi: 10.1097/DBP.0b013e31811320aa.PubMedCrossRefGoogle Scholar
  123. Vanderwert, R. E., Marshall, P. J., Nelson, C. A., Zeanah, C. H., & Fox, N. A. (2010). Timing of intervention affects brain electrical activity in children exposed to severe psychosocial neglect. PloS One, 5, e11415. doi: 10.1371/journal.pone.0011415.PubMedCrossRefGoogle Scholar
  124. Wechsler, D. (2000). Wechsler preschool and primary scale of intelligence. San Antonio: Harcourt Assessment.Google Scholar
  125. Wechsler, D. (2003). WISC-IV technical and interpretive manual. San Antonio: Psychological Corporation.Google Scholar
  126. Willoughby, T., Curran, P. J., Costello, E. J., & Angold, A. (2000). Implications of early versus late onset of attention-deficit/hyperactivity disorder symptoms. Journal of the American Academy of Child & Adolescent Psychiatry, 39, 1512–1519.CrossRefGoogle Scholar
  127. Wolf, H., Jelic, V., Gertz, H., Nordberg, A., Julin, P., & Wahlund, L. (2003). A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurologica Scandinavica Supplementum, 179, 52–76.PubMedCrossRefGoogle Scholar
  128. Xie, P., Kranzler, H., et al. (2009). Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in 2 independent populations. Archives of General Psychiatry, 66(11), 1201–1209.PubMedCrossRefGoogle Scholar
  129. Young, L., & Wang, Z. (2004). The neurobiology of pair bonding. Nature Neuroscience, 7(10), 1048–1054.PubMedCrossRefGoogle Scholar
  130. Zeanah, C., & Smyke, A. (2009). Disorders of attachment. Handbook of Infant Mental Health. C. Zeanah (pp. 421–434). New York: Guilford.Google Scholar
  131. Zeanah, C. H., Nelson, C. A., Fox, N. A., Smyke, A. T., Marshall, P., Parker, S. W., et al. (2003). Designing research to study the effects of institutionalization on brain and behavioral development: the Bucharest Early Intervention Project. Development and Psychopathology, 15(4), 885–907.PubMedCrossRefGoogle Scholar
  132. Zeanah, C., Nelson, C., et al. (2003). Effects of institutionalization on brain and behavioral development: the Bucharest early intervention project. Development and Psychopathology, 15, 885–907.PubMedCrossRefGoogle Scholar
  133. Zeanah, C. H., Scheeringa, M., et al. (2004). Reactive attachment disorder in maltreated toddlers. Child Abuse & Neglect, 28(8), 877.CrossRefGoogle Scholar
  134. Zeanah, C., Smyke, A., et al. (2005). Attachment in institutionalized and community children in Romania. Child Development, 76(5), 1015–1028.PubMedCrossRefGoogle Scholar
  135. Zeanah, C., Egger, H., et al. (2009). Institutional rearing and psychiatric disorders in Romanian preschool children. American Journal of Psychiatry, 166, 777–785.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Margaret Sheridan
    • 1
  • Stacy Drury
    • 2
  • Kate McLaughlin
    • 3
  • Alisa Almas
    • 4
  1. 1.Department of PediatricsHarvard Medical SchoolBostonUSA
  2. 2.Department of Psychiatry and Behavioral HealthTulane Medical SchoolNew OrleansUSA
  3. 3.Department of Health Care PolicyHarvard Medical SchoolBostonUSA
  4. 4.Department of Human DevelopmentUniversity of MarylandCollege ParkUSA

Personalised recommendations