Naringenin Ameliorates Chronic Sleep Deprivation‐Induced Pain via Sirtuin1 Inhibition


Growing experimental evidences have suggested the reciprocal correlation between sleep deprivation and pain. Inflammation and oxidative stress are among the key pathways underlying this correlation. Therefore, the present study was aimed to assess the effect of antioxidant and anti-inflammatory compound naringenin (NGN) against chronic sleep deprivation (CSD)-induced mechanical and thermal hyperalgesia in female Swiss albino mice. In this study, mice were chronically sleep-deprived for 8 h a day for five days a week with the weekend as a free sleep period and continued for nine weeks using a modified multiple platform method. The pain behavioral tests were conducted at the end of the fourth week to assess the development of hyperalgesia followed by the administration of NGN and a combination of NGN with Sirtinol (SIR, a sirtuin1 inhibitor) till the end of the study. After nine weeks, pain behavioral tests, along with oxidative stress and inflammatory parameters in cortex and striatum, were assessed. Results indicated that CSD-induced hyperalgesia in mice accompanied by increased oxidative stress and inflammatory markers in cortex and striatum of the brain. NGN combatted the hyperalgesic response and also decreased levels of oxidative stress and inflammatory markers. Furthermore, the pharmacological effect of NGN was mitigated with SIR. Thus, the findings of the present study reveal that NGN is acting via sirtuin1 to exert its antinociceptive activity against CSD-induced hyperalgesia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The data that support the findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Schuh-Hofer S, Wodarski R, Pfau DB et al (2013) One night of total sleep deprivation promotes a state of generalized hyperalgesia: A surrogate pain model to study the relationship of insomnia and pain. Pain 154:1613–1621.

    Article  PubMed  Google Scholar 

  2. 2.

    Schrimpf M, Liegl G, Boeckle M et al (2015) The effect of sleep deprivation on pain perception in healthy subjects: a meta-analysis. Sleep Med 16:1313–1320.

    Article  PubMed  Google Scholar 

  3. 3.

    Araujo P, Mazaro-Costa R, Tufik S, Andersen ML (2011) Impact of sex on hyperalgesia induced by sleep loss. Horm Behav 59:174–179.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Jansson-Fröjmark M, Boersma K (2012) Bidirectionality between pain and insomnia symptoms: A prospective study. Br J Health Psychol 17:420–431.

    Article  PubMed  Google Scholar 

  5. 5.

    Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13:533–548.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Walker AK, Kavelaars A, Heijnen CJ, Dantzer R (2014) Neuroinflammation and Comorbidity of Pain and Depression. Pharmacol Rev 66:80–101.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Haack M, Sanchez E, Mullington JM (2007) Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep 30:1145–1152.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Salvemini D, Little JW, Doyle T, Neumann WL (2011) Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 51:951–966.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Gopalakrishnan A, Ji LL, Cirelli C (2004) Sleep deprivation and cellular responses to oxidative stress. Sleep 27:27–35.

    Article  PubMed  Google Scholar 

  10. 10.

    Chang H-C, Guarente L (2013) SIRT1 Mediates Central Circadian Control in the SCN by a Mechanism that Decays with Aging. Cell 153:1448–1460.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zhou C, Wu Y, Ding X et al (2020) SIRT1 decreases emotional pain vulnerability with associated CaMKIIα deacetylation in central amygdala. J Neurosci.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Asher G, Gatfield D, Stratmann M et al (2008) SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. Cell.

    Article  PubMed  Google Scholar 

  13. 13.

    Lv C, Hu HY, Zhao L et al (2015) Intrathecal SRT1720, a SIRT1 agonist, exerts anti-hyperalgesic and anti-inflammatory effects on chronic constriction injury-induced neuropathic pain in rats. Int J Clin Exp Med 8:7152–7159

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Cheng HL, Mostoslavsky R, Saito S et al (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A.

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Musiek ES, Lim MM, Yang G et al (2013) Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Salminen A, Ojala J, Huuskonen J et al (2008) Interaction of aging-associated signaling cascades: Inhibition of NF-κB signaling by longevity factors FoxOs and SIRT1. Cell. Mol. Life Sci

  17. 17.

    Sinclair D (2005) Sirtuins for healthy neurons. Nat. Genet

  18. 18.

    Yin Q, Lu F-F, Zhao Y et al (2013) Resveratrol Facilitates Pain Attenuation in a Rat Model of Neuropathic Pain Through the Activation of Spinal Sirt1. Reg Anesth Pain Med 38:93–99.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Chang HM, Wu UI, Lan CT (2009) Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J Pineal Res 47:211–220.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Caito S, Rajendrasozhan S, Cook S et al (2010) SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J 24:3145–3159.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Cheng W, Wang J-F, Yang C-X et al (2016) Intrathecal injection of resveratrol attenuates burn injury pain by activating spinal sirtuin 1. Pharmacogn Mag.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yang C, Kang F, Wang S et al (2019) SIRT1 Activation Attenuates Bone Cancer Pain by Inhibiting mGluR1/5. Cell Mol Neurobiol.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Al-Rejaie SS, Aleisa AM, Abuohashish HM et al (2015) Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol Res 37:924–933.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Pinho-Ribeiro FA, Zarpelon AC, Fattori V et al (2016) Naringenin reduces inflammatory pain in mice. Neuropharmacology 105:508–519.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Wang CC, Guo L, Tian FD et al (2017) Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model. Brazilian J Med Biol Res 50:e5714.

    CAS  Article  Google Scholar 

  26. 26.

    Hasanein P, Fazeli F (2014) Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J Physiol Biochem 70:997–1006.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Testai L, Piragine E, Piano I et al (2020) The Citrus Flavonoid Naringenin Protects the Myocardium from Ageing-Dependent Dysfunction: Potential Role of SIRT1. Oxid Med Cell Longev 2020:1–15.

    CAS  Article  Google Scholar 

  28. 28.

    Lim KH, Kim GR (2018) Inhibitory effect of naringenin on LPS-induced skin senescence by SIRT1 regulation in HDFs. Biomed Dermatology 2:1–9.

    CAS  Article  Google Scholar 

  29. 29.

    Sarubbo F, Ramis MR, Kienzer C et al (2018) Chronic Silymarin, Quercetin and Naringenin Treatments Increase Monoamines Synthesis and Hippocampal Sirt1 Levels Improving Cognition in Aged Rats. J Neuroimmune Pharmacol.

    Article  PubMed  Google Scholar 

  30. 30.

    Umukoro S, Kalejaye HA, Ben-Azu B, Ajayi AM (2018) Naringenin attenuates behavioral derangements induced by social defeat stress in mice via inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines. Biomed Pharmacother 105:714–723.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Bansal Y, Singh R, Saroj P et al (2018) Naringenin protects against oxido-inflammatory aberrations and altered tryptophan metabolism in olfactory bulbectomized-mice model of depression. Toxicol Appl Pharmacol 355:257–268.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Patti CL, Zanin KA, Sanday L et al (2010) Effects of sleep deprivation on memory in mice: Role of state-dependent learning. Sleep 33:1669–1679.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Minville V, Fourcade O, Girolami J-PP, Tack I (2010) Opioid-induced hyperalgesia in a mice model of orthopaedic pain: preventive effect of ketamine. Br J Anaesth 104:231–238.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Ramabadran K, Bansinath M, Turndorf H, Puig MM (2003) Tail immersion test for the evaluation of a nociceptive reaction in mice. J Pharmacol Methods 21:21–31.

    Article  Google Scholar 

  35. 35.

    Lowry HO, Rosebrough NJ, Randall RJ, Farr AL (1951) Protein measurement with the folin reagent. J Biol Chem 193:265–275.

    CAS  Article  Google Scholar 

  36. 36.

    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) Hand Book of Methods for Oxygen Radical Research. In: CRC Press, Boca Raton

    Google Scholar 

  38. 38.

    Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Wills ED (1965) Mechanisms of lipid peroxide formation in tissues Role of metals and haematin proteins in the catalysis of the oxidation of unsaturated fatty acids. Biochim Biophys Acta - Lipids Lipid Metab 98:238–251.

    CAS  Article  Google Scholar 

  40. 40.

    Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 126:131–138.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Lautenbacher S, Kundermann B, Krieg JC (2006) Sleep deprivation and pain perception. Sleep Med Rev 10:357–369.

    Article  PubMed  Google Scholar 

  42. 42.

    Andersen ML et al (2018) Sleep Disturbance and Pain: A Tale of Two Common Problems. Chest 154:1249–1259.

    Article  Google Scholar 

  43. 43.

    Alexandre C, Latremoliere A, Ferreira A et al (2017) Decreased alertness due to sleep loss increases pain sensitivity in mice. Nat Med 23:768–774.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Sardi NF, Lazzarim MK, Guilhen VA et al (2018) Chronic sleep restriction increases pain sensitivity over time in a periaqueductal gray and nucleus accumbens dependent manner. Neuropharmacology 139:52–60.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Hirotsu C, Pedroni MN, Berro LF et al (2018) Nicotine and sleep deprivation: impact on pain sensitivity and immune modulation in rats. Sci Rep 8:1–9.

    CAS  Article  Google Scholar 

  46. 46.

    Ramesh V, Nair D, Zhang SXL et al (2012) Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-α pathway. J Neuroinflammation 9:1–59.

    CAS  Article  Google Scholar 

  47. 47.

    Zhao Q, Xie X, Fan Y et al (2015) Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment. Sci Rep 5:9513.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zhu B, Dong Y, Xu Z et al (2012) Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol Dis 48:348–355.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Valvassori SS, Resende WR, Dal-Pont G et al (2017) Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice. Bipolar Disord 19:246–258.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Oka T, Oka K, Hosoi M, Hori T (1995) Intracerebroventricular injection of interleukin-6 induces thermal hyperalgesia in rats. Brain Res 692:123–128.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Kumar A, Garg R (2008) A role of nitric oxide mechanism involved in the protective effects of venlafaxine in sleep deprivation. Behav Brain Res 194:169–173.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Kumar A, Singh A (2008) Possible nitric oxide modulation in protective effect of (Curcuma longa, Zingiberaceae) against sleep deprivation-induced behavioral alterations and oxidative damage in mice. Phytomedicine 15:577–586.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Damasceno F, Skinner GO, Araujo PC et al (2013) Nitric Oxide modulates the hyperalgesia induced by mechanical noxious stimulus in paradoxical sleep deprived rats. BMC Neurosci 14:92–98.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Koch A, Zacharowski K, Boehm O et al (2007) Nitric oxide and pro-inflammatory cytokines correlate with pain intensity in chronic pain patients. Inflamm Res 56:32–37.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Cashman CR, Höke A (2015) Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 596:33–50.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Levy D, Zochodne DW (2004) NO pain: Potential roles of nitric oxide in neuropathic pain. Pain Pract 4:11–18.

    Article  PubMed  Google Scholar 

  57. 57.

    Kuhad A, Chopra K (2009) Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 57:456–462.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Manchope MF, Calixto-Campos C, Coelho-Silva L et al (2016) Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain: Role of Oxidative Stress, Cytokines, Nrf-2 and the NO – cGMP – PKG – KATPChannel Signaling Pathway. PLoS One 11:e0153015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Chung TW, Li S, Lin CC, Tsai SW (2019) Antinociceptive and anti-inflammatory effects of the citrus flavanone naringenin. Tzu Chi Med J 31:81–85.

    Article  PubMed Central  Google Scholar 

  60. 60.

    Yan J, Luo A, Gao J et al (2019) The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am J Transl Res 11:1555–1568

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Lu H, Wang B (2017) SIRT1 exerts neuroprotective effects by attenuating cerebral ischemia/reperfusion-induced injury via targeting p53/microRNA-22. Int J Mol Med 39:208–216.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Shao H, Xue Q, Zhang F et al (2014) Spinal SIRT1 Activation Attenuates Neuropathic Pain in Mice. PLoS One 9:e100938.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Zuo J-X, Li M, Jiang L et al (2020) Hydrogen Sulfide Prevents Sleep Deprivation-Induced Hippocampal Damage by Upregulation of Sirt1 in the Hippocampus. Front Neurosci 14:1–40.

    Article  Google Scholar 

Download references


The authors gratefully acknowledge the University Grant Commission (UGC), New Delhi, and AICTE, New Delhi for awarding fellowships to Ms. Shiyana Arora (BSR RFSMS fellowship) and Ms. Aishwarya Venugopalan, respectively. The authors are immensely thankful to the University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, for providing the research infrastructure.

Author information




SA, AV, and KC conceived the idea and designed the hypothesis. SA, AV are co-first authors because they have contributed equally to the experiment and manuscript. SA, AV and RND executed experiments and were involved in data collection and data analysis. SA, AV, and RND prepared the manuscript. MB, KKK, and KC were involved in manuscript revision. All the authors have approved the final manuscript.

Corresponding author

Correspondence to Kanwaljit Chopra.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Venugopalan, A., Dharavath, R.N. et al. Naringenin Ameliorates Chronic Sleep Deprivation‐Induced Pain via Sirtuin1 Inhibition. Neurochem Res (2021).

Download citation


  • Anti‐nociception
  • Flavonoid
  • Modified multiple platform
  • Neuroinflammation
  • Oxidative stress
  • Phytomolecule
  • Sirtinol