Metforminium Decavanadate (MetfDeca) Treatment Ameliorates Hippocampal Neurodegeneration and Recognition Memory in a Metabolic Syndrome Model

Abstract

The consumption of foods rich in carbohydrates, saturated fat, and sodium, accompanied by a sedentary routine, are factors that contribute to the progress of metabolic syndrome (MS). In this way, they cause the accumulation of body fat, hypertension, dyslipidemia, and hyperglycemia. Additionally, MS has been shown to cause oxidative stress, inflammation, and death of neurons in the hippocampus. Consequently, spatial and recognition memory is affected. It has recently been proposed that metformin decavanadate (MetfDeca) exerts insulin mimetic effects that enhance metabolism in MS animals; however, what effects it can cause on the hippocampal neurons of rats with MS are unknown. The objective of the work was to evaluate the effect of MetfDeca on hippocampal neurodegeneration and recognition memory in rats with MS. Administration of MetfDeca for 60 days in MS rats improved object recognition memory (NORt). In addition, MetfDeca reduced markers of oxidative stress and hippocampal neuroinflammation. Accompanied by an increase in the density and length of the dendritic spines of the hippocampus of rats with MS. We conclude that MetfDeca represents an important therapeutic agent to treat MS and induce neuronal and cognitive restoration mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of Data

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Wang HH, Lee DK, Liu M, Portincasa P, Wang DQH (2020) Novel insights into the pathogenesis and management of the metabolic syndrome. Pediatr Gastroenterol Hepatol Nutr 23(3):189–230. https://doi.org/10.5223/pghn.2020.23.3.189

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Halpern A, Mancini MC, Magalhães MEC, Fisberg M, Radominski R, Bertolami MC, Bertolami A, de Melo ME, Zanella MT, Queiroz MS, Nery M (2010) Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetol Metab Syndr 2:55–55. https://doi.org/10.1186/1758-5996-2-55

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Roberts CK, Hevener AL, Barnard RJ (2013) Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 3(1):1–58. https://doi.org/10.1002/cphy.c110062

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, Thambisetty M, Tenenbaum JD, Suhre K, Thompson JW, John-Williams LS, MahmoudianDehkordi S, Rotroff DM, Jack JR, Motsinger-Reif A, Risacher SL, Blach C, Lucas JE, Massaro T, Louie G, Zhu H, Dallmann G, Klavins K, Koal T, Kim S, Nho K, Shen L, Casanova R, Varma S, Legido-Quigley C, Moseley MA, Zhu K, Henrion MYR, van der Lee SJ, Harms AC, Demirkan A, Hankemeier T, van Duijn CM, Trojanowski JQ, Shaw LM, Saykin AJ, Weiner MW, Doraiswamy PM, Kaddurah-Daouk R, Alzheimer’s Disease Neuroimaging I, the Alzheimer Disease Metabolomics C (2017) Metabolic network failures in Alzheimer’s disease: a biochemical road map. Alzheimers Dement 13 (9):965–984. https://doi.org/10.1016/j.jalz.2017.01.020

  5. 5.

    Assuncao N, Sudo FK, Drummond C, de Felice FG, Mattos P (2018) Metabolic Syndrome and cognitive decline in the elderly: A systematic review. PLoS One 13(3):e0194990–e0194990. https://doi.org/10.1371/journal.pone.0194990

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Raffaitin C, Gin H, Empana J-P, Helmer C, Berr C, Tzourio C, Portet F, Dartigues J-F, Alpérovitch A, Barberger-Gateau P (2009) Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: the Three-City Study. Diabetes Care 32(1):169–174. https://doi.org/10.2337/dc08-0272

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J (2017) Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 71(10):e21990. https://doi.org/10.1002/syn.21990

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Balin BJ, Hudson AP (2014) Etiology and pathogenesis of late-onset Alzheimer’s disease. Curr Allergy Asthma Rep 14(3):417. https://doi.org/10.1007/s11882-013-0417-1

    Article  PubMed  Google Scholar 

  9. 9.

    Mucke L (2009) Neuroscience: Alzheimer’s disease. Nature 461(7266):895–897. https://doi.org/10.1038/461895a

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Cigliano L, Spagnuolo MS, Crescenzo R, Cancelliere R, Iannotta L, Mazzoli A, Liverini G, Iossa S (2018) Short-Term Fructose Feeding Induces Inflammation and Oxidative Stress in the Hippocampus of Young and Adult Rats. Mol Neurobiol 55(4):2869–2883. https://doi.org/10.1007/s12035-017-0518-2

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Treviño S, Aguilar-Alonso P, Flores Hernandez JA, Brambila E, Guevara J, Flores G, Lopez-Lopez G, Muñoz-Arenas G, Morales-Medina JC, Toxqui V, Venegas B, Diaz A (2015) A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats. Synapse 69(9):421–433. https://doi.org/10.1002/syn.21832

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Diaz A, Escobedo C, Treviño S, Chávez R, Lopez-Lopez G, Moran C, Guevara J, Venegas B, Muñoz-Arenas G (2018) Metabolic syndrome exacerbates the recognition memory impairment and oxidative-inflammatory response in rats with an intrahippocampal injection of amyloid beta 1–42. Oxid Med Cell Longev 2018:1358057. https://doi.org/10.1155/2018/1358057

  13. 13.

    Kempuraj D, Thangavel R, Natteru PA, Selvakumar GP, Saeed D, Zahoor H, Zaheer S, Iyer SS, Zaheer A (2016) Neuroinflammation Induces Neurodegeneration. J Neurol Neurosurg Spine 1 (1)

  14. 14.

    Heneka MT (2017) Inflammasome activation and innate immunity in Alzheimer’s disease. Brain Pathol 27(2):220–222. https://doi.org/10.1111/bpa.12483

    Article  PubMed  Google Scholar 

  15. 15.

    Pugazhenthi S (2017) Metabolic Syndrome and the Cellular Phase of Alzheimer’s Disease. Prog Mol Biol Transl Sci 146:243–258. https://doi.org/10.1016/bs.pmbts.2016.12.016

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yaffe K (2007) Metabolic syndrome and cognitive decline. Curr Alzheimer Res 4(2):123–126. https://doi.org/10.2174/156720507780362191

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Diaz A, Treviño S, Pulido-Fernandez G, Martínez-Muñoz E, Cervantes N, Espinosa B, Rojas K, Pérez-Severiano F, Montes S, Rubio-Osornio M, Jorge G (2019) Epicatechin Reduces Spatial Memory Deficit Caused by Amyloid-β25–35 Toxicity Modifying the Heat Shock Proteins in the CA1 Region in the Hippocampus of Rats. Antioxidants (Basel) 8 (5). https://doi.org/10.3390/antiox8050113

  18. 18.

    Treviño S, Vázquez-Roque RA, López-López G, Perez-Cruz C, Moran C, Handal-Silva A, González-Vergara E, Flores G, Guevara J, Díaz A (2017) Metabolic syndrome causes recognition impairments and reduced hippocampal neuronal plasticity in rats. J Chem Neuroanat 82:65–75. https://doi.org/10.1016/j.jchemneu.2017.02.007

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wahl D, Solon-Biet SM, Wang QP, Wali JA, Pulpitel T, Clark X, Raubenheimer D, Senior AM, Sinclair DA, Cooney GJ, de Cabo R, Cogger VC, Simpson SJ, Le Couteur DG (2018) Comparing the Effects of Low-Protein and High-Carbohydrate Diets and Caloric Restriction on Brain Aging in Mice. Cell Rep 25(8):2234–2243.e2236. https://doi.org/10.1016/j.celrep.2018.10.070

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Moran C, Callisaya ML, Srikanth V, Arvanitakis Z (2019) Diabetes Therapies for Dementia. Curr Neurol Neurosci Rep 19(8):58. https://doi.org/10.1007/s11910-019-0973-4

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Campbell JM, Stephenson MD, de Courten B, Chapman I, Bellman SM, Aromataris E (2017) Metformin and Alzheimer’s disease, dementia and cognitive impairment: a systematic review protocol. JBI Database System Rev Implement Rep 15(8):2055–2059. https://doi.org/10.11124/jbisrir-2017-003380

    Article  PubMed  Google Scholar 

  22. 22.

    Muñoz-Arenas G, Pulido G, Treviño S, Vázquez-Roque R, Flores G, Moran C, Handal-Silva A, Guevara J, Venegas B, Díaz A (2020) Effects of metformin on recognition memory and hippocampal neuroplasticity in rats with metabolic syndrome. Synapse 74(9):e22153. https://doi.org/10.1002/syn.22153

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Leech T, Chattipakorn N, Chattipakorn SC (2019) The beneficial roles of metformin on the brain with cerebral ischaemia/reperfusion injury. Pharmacol Res 146:104261. https://doi.org/10.1016/j.phrs.2019.104261

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Li W, Chaudhari K, Shetty R, Winters A, Gao X, Hu Z, Ge WP, Sumien N, Forster M, Liu R, Yang SH (2019) Metformin Alters Locomotor and Cognitive Function and Brain Metabolism in Normoglycemic Mice. Aging Dis 10(5):949–963. https://doi.org/10.14336/ad.2019.0120

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2016) [Insulin-mimetic property of vanadium compounds]. Postepy Biochem 62(1):60–65

    PubMed  Google Scholar 

  26. 26.

    Cam MC, Brownsey RW, McNeill JH (2000) Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 78(10):829–847

    CAS  Article  Google Scholar 

  27. 27.

    Thompson KH (1999) Vanadium and diabetes. Biofactors 10(1):43–51. https://doi.org/10.1002/biof.5520100105

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Domingo JL, Gómez M (2016) Vanadium compounds for the treatment of human diabetes mellitus: A scientific curiosity? A review of thirty years of research. Food Chem Toxicol 95:137–141. https://doi.org/10.1016/j.fct.2016.07.005

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E (2019) Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 188(1):68–98. https://doi.org/10.1007/s12011-018-1540-6

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Rehder D (2016) Perspectives for vanadium in health issues. Future Med Chem 8(3):325–338. https://doi.org/10.4155/fmc.15.187

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Tripathi D, Mani V, Pal RP (2018) Vanadium in Biosphere and Its Role in Biological Processes. Biol Trace Elem Res 186(1):52–67. https://doi.org/10.1007/s12011-018-1289-y

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Treviño S, Diaz A (2020) Vanadium and insulin: Partners in metabolic regulation. J Inorg Biochem 208:111094. https://doi.org/10.1016/j.jinorgbio.2020.111094

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Treviño S, Díaz A, Sánchez-Lara E, Sarmiento-Ortega VE, Flores-Hernández J, Brambila E, Meléndez FJ, González-Vergara E (2018) Pharmacological and Toxicological Threshold of Bisammonium Tetrakis 4-(N,N-Dimethylamino)pyridinium Decavanadate in a Rat Model of Metabolic Syndrome and Insulin Resistance. Bioinorg Chem Appl 2018:2151079. https://doi.org/10.1155/2018/2151079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Treviño S, Velázquez-Vázquez D, Sánchez-Lara E, Diaz-Fonseca A, Flores-Hernandez J, Pérez-Benítez A, Brambila-Colombres E, González-Vergara E (2016) Metforminium Decavanadate as a Potential Metallopharmaceutical Drug for the Treatment of Diabetes Mellitus. Oxid Med Cell Longev 2016:6058705. https://doi.org/10.1155/2016/6058705

  35. 35.

    Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13(2):93–110. https://doi.org/10.1007/s10339-011-0430-z

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Kiesow LA, Bless JW, Nelson DP, Shelton JB (1972) A new method for the rapid determination of oxygen-dissociation curves in small blood samples by spectrophotometric titration. Clin Chim Acta 41:123–139. https://doi.org/10.1016/0009-8981(72)90503-7

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Diaz A, Limon D, Chávez R, Zenteno E, Guevara J (2012) Aβ25–35 injection into the temporal cortex induces chronic inflammation that contributes to neurodegeneration and spatial memory impairment in rats. J Alzheimers Dis 30(3):505–522. https://doi.org/10.3233/jad-2012-111979

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Flores G, Alquicer G, Silva-Gómez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK (2005) Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 133(2):463–470. https://doi.org/10.1016/j.neuroscience.2005.02.021

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Silva-Gómez AB, Rojas D, Juárez I, Flores G (2003) Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983(1–2):128–136. https://doi.org/10.1016/s0006-8993(03)03042-7

    Article  PubMed  Google Scholar 

  40. 40.

    Arroyo-García LE, Vázquez-Roque RA, Díaz A, Treviño S, De La Cruz F, Flores G, Rodríguez-Moreno A (2018) The Effects of Non-selective Dopamine Receptor Activation by Apomorphine in the Mouse Hippocampus. Mol Neurobiol 55(11):8625–8636. https://doi.org/10.1007/s12035-018-0991-2

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Robins SJ, Lyass A, Zachariah JP, Massaro JM, Vasan RS (2011) Insulin resistance and the relationship of a dyslipidemia to coronary heart disease: the Framingham Heart Study. Arterioscler Thromb Vasc Biol 31(5):1208–1214. https://doi.org/10.1161/atvbaha.110.219055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sung KC, Park HY, Kim MJ, Reaven G (2016) Metabolic markers associated with insulin resistance predict type 2 diabetes in Koreans with normal blood pressure or prehypertension. Cardiovasc Diabetol 15:47. https://doi.org/10.1186/s12933-016-0368-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Stąpor N, Beń-Skowronek I (2015) Insulin resistance in children. Pediatr Endocrinol Diabetes Metab 20(3):107–115. https://doi.org/10.18544/pedm-20.03.0010

    Article  PubMed  Google Scholar 

  44. 44.

    Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4):2133–2223. https://doi.org/10.1152/physrev.00063.2017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hamed SA (2017) Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol 10(4):409–428. https://doi.org/10.1080/17512433.2017.1293521

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Ziablitsev SV, Pishchulina SV, Kolesnikova SV, Boris RN, Yuzkiv Ya S (2016) Disorders of carbohydrate metabolism in experimental brain injury. Fiziol Zh 62(4):18–22. https://doi.org/10.15407/fz62.04.018

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Chatterjee S, Peters SA, Woodward M, Mejia Arango S, Batty GD, Beckett N, Beiser A, Borenstein AR, Crane PK, Haan M, Hassing LB, Hayden KM, Kiyohara Y, Larson EB, Li CY, Ninomiya T, Ohara T, Peters R, Russ TC, Seshadri S, Strand BH, Walker R, Xu W, Huxley RR (2016) Type 2 Diabetes as a Risk Factor for Dementia in Women Compared With Men: A Pooled Analysis of 2.3 Million People Comprising More Than 100,000 Cases of Dementia. Diabetes Care 39(2):300–307. https://doi.org/10.2337/dc15-1588

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Pedditzi E, Peters R, Beckett N (2016) The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing 45(1):14–21. https://doi.org/10.1093/ageing/afv151

    Article  PubMed  Google Scholar 

  49. 49.

    Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA (2014) Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol 2(3):246–255. https://doi.org/10.1016/s2213-8587(13)70088-3

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Biessels GJ, Janssen J, van den Berg E, Zinman B, Espeland MA, Mattheus M, Johansen OE (2018) Rationale and design of the CAROLINA® - cognition substudy: a randomised controlled trial on cognitive outcomes of linagliptin versus glimepiride in patients with type 2 diabetes mellitus. BMC Neurol 18(1):7. https://doi.org/10.1186/s12883-018-1014-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Grillo CA, Woodruff JL, Macht VA, Reagan LP (2019) Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp Neurol 318:71–77. https://doi.org/10.1016/j.expneurol.2019.04.012

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Spinelli M, Fusco S, Mainardi M, Scala F, Natale F, Lapenta R, Mattera A, Rinaudo M, Li Puma DD, Ripoli C, Grassi A, D’Ascenzo M, Grassi C (2017) Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a. Nat Commun 8(1):2009. https://doi.org/10.1038/s41467-017-02221-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Zhao F, Siu JJ, Huang W, Askwith C, Cao L (2019) Insulin Modulates Excitatory Synaptic Transmission and Synaptic Plasticity in the Mouse Hippocampus. Neuroscience 411:237–254. https://doi.org/10.1016/j.neuroscience.2019.05.033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Grillo CA, Piroli GG, Lawrence RC, Wrighten SA, Green AJ, Wilson SP, Sakai RR, Kelly SJ, Wilson MA, Mott DD, Reagan LP (2015) Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity. Diabetes 64(11):3927–3936. https://doi.org/10.2337/db15-0596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Williamson R, McNeilly A, Sutherland C (2012) Insulin resistance in the brain: an old-age or new-age problem? Biochem Pharmacol 84(6):737–745. https://doi.org/10.1016/j.bcp.2012.05.007

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Tomassoni D, Nwankwo IE, Gabrielli MG, Bhatt S, Muhammad AB, Lokhandwala MF, Tayebati SK, Amenta F (2013) Astrogliosis in the brain of obese Zucker rat: a model of metabolic syndrome. Neurosci Lett 543:136–141. https://doi.org/10.1016/j.neulet.2013.03.025

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    García-García L, Fernández de la Rosa R, Delgado M, Silván Á, Bascuñana P, Bankstahl JP, Gomez F, Pozo MA (2018) Metyrapone prevents acute glucose hypermetabolism and short-term brain damage induced by intrahippocampal administration of 4-aminopyridine in rats. Neurochem Int 113:92–106. https://doi.org/10.1016/j.neuint.2017.11.018

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Zelikoff JT, Parmalee NL, Corbett K, Gordon T, Klein CB, Aschner M (2018) Microglia activation and gene expression alteration of neurotrophins in the hippocampus following early-life exposure to E-cigarette aerosols in a murine model. Toxicol Sci 162(1):276–286. https://doi.org/10.1093/toxsci/kfx257

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Gibon J, Barker PA (2017) Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain. Neuroscientist 23(6):587–604. https://doi.org/10.1177/1073858417697037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Hurrle S, Hsu WH (2017) The etiology of oxidative stress in insulin resistance. Biomed J 40(5):257–262. https://doi.org/10.1016/j.bj.2017.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Rumora AE, Lentz SI, Hinder LM, Jackson SW, Valesano A, Levinson GE, Feldman EL (2018) Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. Faseb j 32(1):195–207. https://doi.org/10.1096/fj.201700206R

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Coudray C, Fouret G, Lambert K, Ferreri C, Rieusset J, Blachnio-Zabielska A, Lecomte J, Ebabe Elle R, Badia E, Murphy MP, Feillet-Coudray C (2016) A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. Br J Nutr 115(7):1155–1166. https://doi.org/10.1017/s0007114515005528

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Rotermund C, Machetanz G, Fitzgerald JC (2018) The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front Endocrinol (Lausanne) 9:400. https://doi.org/10.3389/fendo.2018.00400

    Article  Google Scholar 

  64. 64.

    Dolan DG, Naumann BD, Sargent EV, Maier A, Dourson M (2005) Application of the threshold of toxicological concern concept to pharmaceutical manufacturing operations. Regul Toxicol Pharmacol 43(1):1–9. https://doi.org/10.1016/j.yrtph.2005.06.010

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Shi X, Dalal NS (1993) Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs Fenton mechanism. Arch Biochem Biophys 307(2):336–341. https://doi.org/10.1006/abbi.1993.1597

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Islam MK, Tsuboya C, Kusaka H, Aizawa S, Ueki T, Michibata H, Kanamori K (2007) Reduction of vanadium(V) to vanadium(IV) by NADPH, and vanadium(IV) to vanadium(III) by cysteine methyl ester in the presence of biologically relevant ligands. Biochim Biophys Acta 1770(8):1212–1218. https://doi.org/10.1016/j.bbagen.2007.05.003

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Yang XG, Wang K (2013) Chemical, biochemical, and biological behaviors of vanadate and its oligomers. Prog Mol Subcell Biol 54:1–18. https://doi.org/10.1007/978-3-642-41004-8_1

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Aureliano M, Leta J, Madeira VM, de Meis L (1994) The cleavage of phosphoenolpyruvate by vanadate. Biochem Biophys Res Commun 201(1):155–159. https://doi.org/10.1006/bbrc.1994.1682

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Zhang ZF, Chen J, Han X, Zhang Y, Liao HB, Lei RX, Zhuang Y, Wang ZF, Li Z, Chen JC, Liao WJ, Zhou HB, Liu F, Wan Q (2017) Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br J Pharmacol 174(8):641–656. https://doi.org/10.1111/bph.13727

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Liao XY, Lei Y, Chen SF, Cheng J, Zhao D, Zhang ZF, Han X, Zhang Y, Liao HB, Zhuang Y, Chen J, Zhou HB, Wan Q, Zou YY (2019) The neuroprotective effect of bisperoxovandium (pyridin-2-squaramide) in intracerebral hemorrhage. Drug Des Devel Ther 13:1957–1967. https://doi.org/10.2147/dddt.S204956

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Ahmadi-Eslamloo H, Moosavi SMS, Dehghani GA (2017) Cerebral Ischemia-Reperfusion Injuries in Vanadyl-Treated Diabetic Rats. Iran J Med Sci 42(6):544–552

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Rumora L, Shaver A, Zanic Grubisic T, Maysinger D (2001) MKP-1 as a target for pharmacological manipulations in PC12 cell survival. Neurochem Int 39(1):25–32. https://doi.org/10.1016/s0197-0186(01)00004-3

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Wang N, Wang Z, Niu X, Yang X (2015) Synthesis, characterization and anti-diabetic therapeutic potential of novel aminophenol-derivatized nitrilotriacetic acid vanadyl complexes. J Inorg Biochem 152:104–113. https://doi.org/10.1016/j.jinorgbio.2015.07.012

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Huang M, Wu Y, Wang N, Wang Z, Zhao P, Yang X (2014) Is the hypoglycemic action of vanadium compounds related to the suppression of feeding? Biol Trace Elem Res 157(3):242–248. https://doi.org/10.1007/s12011-013-9882-6

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Gallardo-Vera F, Diaz D, Tapia-Rodriguez M, Fortoul van der Goes T, Masso F, Rendon-Huerta E, Montaño LF (2016) Vanadium pentoxide prevents NK-92MI cell proliferation and IFNγ secretion through sustained JAK3 phosphorylation. J Immunotoxicol 13(1):27–37. https://doi.org/10.3109/1547691x.2014.996681

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Tsave O, Petanidis S, Kioseoglou E, Yavropoulou MP, Yovos JG, Anestakis D, Tsepa A, Salifoglou A (2016) Role of vanadium in cellular and molecular immunology: association with immune-related inflammation and pharmacotoxicology mechanisms. Oxid Med Cell Longev 2016:4013639. https://doi.org/10.1155/2016/4013639

  77. 77.

    Stow JL, Murray RZ (2013) Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev 24(3):227–239. https://doi.org/10.1016/j.cytogfr.2013.04.001

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Rice RA, Pham J, Lee RJ, Najafi AR, West BL, Green KN (2017) Microglial repopulation resolves inflammation and promotes brain recovery after injury. Glia 65(6):931–944. https://doi.org/10.1002/glia.23135

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    He Z, Han S, Zhu H, Hu X, Li X, Hou C, Wu C, Xie Q, Li N, Du X, Ni J, Liu Q (2020) The protective effect of vanadium on cognitive impairment and the neuropathology of Alzheimer’s disease in APPSwe/PS1dE9 Mice. Front Mol Neurosci 13:21. https://doi.org/10.3389/fnmol.2020.00021

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Dong Y, Zhao Y, Lin H, Liu C (2019) Effect of physical and chemical properties of vanadium slag from stone coal on the form of vanadium. Environ Sci Pollut Res Int 26(32):33004–33013. https://doi.org/10.1007/s11356-019-06381-7

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Dong Y, Stewart T, Zhang Y, Shi M, Tan C, Li X, Yuan L, Mehrotra A, Zhang J, Yang X (2019) Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition. Sci China Life Sci 62(1):126–139. https://doi.org/10.1007/s11427-018-9350-1

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank Dr. Francisco Ramos for his help with the animal care. Thanks to Professor Thomas Edwards PhD., for editing the English language text.

Funding

Funding for this study was provided by grants from VIEP-BUAP Grant (No. DIFA-NAT19-G) to DA and ST, (No. TEMS-NAT19-I) to TS and PAPIIT-UNAM (IN214117) to JG. None of the funding institutions had any further role in the study design, the collection of data, analyses, and interpretation of data, writing of the report or in the decision to submit the paper for publication and interpretation of data, writing of the report or the decision to submit the paper for publication.

Author information

Affiliations

Authors

Contributions

AD and ST designed the study and wrote the protocol. AD, BV, GMA, and RVR performed the experiments. AD, ST, EGV, GF, and JG managed the literature searches and analysis, EGV undertook the statistical analysis. AD and ST wrote the first draft of the manuscript. All contributing authors have approved the final manuscript.

Corresponding author

Correspondence to Samuel Treviño.

Ethics declarations

Conflict of Interest

Authors have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diaz, A., Muñoz-Arenas, G., Venegas, B. et al. Metforminium Decavanadate (MetfDeca) Treatment Ameliorates Hippocampal Neurodegeneration and Recognition Memory in a Metabolic Syndrome Model. Neurochem Res (2021). https://doi.org/10.1007/s11064-021-03250-z

Download citation

Keywords

  • Vanadium
  • Spines dendritic
  • Golgi-Cox
  • Interleukins
  • Reactive oxygen species
  • Inflammation