The Protective Action of Rubus sp. Fruit Extract Against Oxidative Damage in Mice Exposed to Lipopolysaccharide

Abstract

Neuroinflammation is an event that occurs in several pathologies of brain. Rubus sp. (blackberry) is a powerful antioxidant fruit, and its extract has neuroprotective activity. The aim of this study was to investigate the blackberry extract properties on lipopolysaccharide (LPS)-induced neuroinflammation, in relation to oxidative parameters and acetylcholinesterase activity in the brain structures of mice. We also investigated interleukin-10 levels in serum. Mice were submitted to Rubus sp. extract treatment once daily for 14 days. On the fifteenth day, LPS was injected in a single dose. LPS induced oxidative brain damage and the blackberry extract demonstrated preventive effects in LPS-challenged mice. LPS administration increased reactive oxygen species levels in the cerebral cortex and striatum, as well as lipid peroxidation in the cerebral cortex. However, the blackberry extract prevented all these parameters. Furthermore, LPS decreased thiol content in the striatum and hippocampus, while a neuroprotective effect of blackberry extract treatment was observed in relation to this parameter. The blackberry extract also prevented a decrease in catalase activity in all the brain structures and of superoxide dismutase in the striatum. An increase in acetylcholinesterase activity was detected in the cerebral cortex in the LPS group, but this activity was decreased in the Rubus sp. extract group. Serum IL-10 levels were reduced by LPS, and the extract was not able to prevent this change. Finally, we observed an antioxidant effect of blackberry extract in LPS-challenged mice suggesting that this anthocyanin-rich extract could be considered as a potential nutritional therapeutic agent for preventive damage associated with neuroinflammation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ransohoff RM, Schafer D, Vincent A, Blachère NE, Bar-Or A (2015) Neuroinflammation: ways in which the immune system affects the brain. Neurotherapeutics 12:896–909. https://doi.org/10.1007/s13311-015-0385-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    DiSabato D, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139:136–153. https://doi.org/10.1111/jnc.13607

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Walker AK, Kavelaars A, Heijnen CJ, Dantzer R (2014) Neuroinflammation and comorbidity of pain and depression. Pharmacol Rev 66:80–101. https://doi.org/10.1124/pr.113.008144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Quan N (2008) Immune-to-brain signaling: how important are the blood-brain barrier-independent pathways? Mol Neurobiol 37:142–152. https://doi.org/10.1007/s12035-008-8026-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G (2017) Neuroinflammation pathways: a general review. Int J Neurosci 127:624–633. https://doi.org/10.1080/00207454.2016.1212854

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hampel H, Mesulam MM, Cuello CA, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ, Khachaturian ZS (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933. https://doi.org/10.1093/brain/awy132

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335. https://doi.org/10.2174/1570159X11311030006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Tyagi E, Agrawal R, Nath C, Shukla R (2010) Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 640:206–210. https://doi.org/10.1016/j.ejphar.2010.04.041

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Joshi R, Garabadu D, Teja GR, Krishnamurthy S (2014) Silibinin ameliorates LPS-induced memory deficits in experimental animals. Neurobiol Learn Mem 116:117–131. https://doi.org/10.1016/j.nlm.2014.09.006

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ammari M, Othman H, Hajri A, Sakly M, Abdelmelek H (2018) Pistacia lentiscus oil attenuates memory dysfunction and decreases levels of biomarkers of oxidative stress induced by lipopolysaccharide in rats. Brain Res Bull 140:140–147. https://doi.org/10.1016/j.brainresbull.2018.04.014

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Khalili M, Alavi M, Esmaeil-Jamaat E, Baluchnejadmojarad T, Roghani M (2018) Trigonelline mitigates lipopolysaccharide-induced learning and memory impairment in the rat due to its anti-oxidative and anti-inflammatory effect. Int Immunopharmacol 61:355–362. https://doi.org/10.1016/j.intimp.2018.06.019

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    An J, Chen B, Kang X, Zhang R, Guo Y, Zhao J, Yang H (2020) Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia. Am J Transl Res 12:2353–2378

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Catorce MN, Gevorkian G (2016) LPS-induced murine neuroinflammation model: main features and suitability for pre-clinical assessment of nutraceuticals. Curr Neuropharmacol 14:155–164. https://doi.org/10.2174/1570159x14666151204122017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Valli M, Bolzani VS (2019) Natural products: perspectives and challenges for use of brazilian plant species in the bioeconomy. An Acad Bras Cienc 91:e20190208. https://doi.org/10.1590/0001-3765201920190208

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Carvalho FB, Gutierres JM, Bueno A, Agostinho P, Zago AM, Vieira J, Frühauf P, Cechella JL, Nogueira CW, Oliveira SM, Rizzi C, Spanevello RM, Duarte MMF, Duarte T, Dellagostin OA, Andrade CM (2016) Anthocyanins control neuroinflammation and consequent memory dysfunction in mice exposed to lipopolysaccharide. Mol Neurobiol 54:3350–3367. https://doi.org/10.1007/s12035-016-9900-8

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Pacheco SM, Soares MSP, Gutierres JM, Gerzson MFB, Carvalho FB, Azambuja JH, Schetinger MRC, Stefanello FM, Spanevello RM (2018) Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type. J Nutr Biochem 56:193–204. https://doi.org/10.1016/j.jnutbio.2018.02.014

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Spohr L, Soares MSP, Oliveira PS, Mattos BS, Bona NP, Pedra NS, Teixeira FC, Couto CAT, Chaves VC, Reginatto FH, Lisboa MB, Ribeiro AS, Lencina CL, Stefanello FM, Spanevello RM (2019) Combined actions of blueberry extract and lithium on neurochemical changes observed in an experimental model of mania: exploiting possible synergistic effects. Metab Brain Dis 34:605–619. https://doi.org/10.1007/s11011-018-0353-9

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Chaves VC, Soares MSP, Spohr L, Teixeira F, Vieira A, Constantino LS, Dal Pizzol F, Lencina CL, Spanevello RM, Freitas MP, Simões CMO, Reginatto FH, Stefanello FM (2020) Blackberry extract improves behavioral and neurochemical dysfunctions in a ketamine-induced rat model of mania. Neurosci Lett 714:134566. https://doi.org/10.1016/j.neulet.2019.134566

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Chaves VC, Calvete E, Reginatto FH (2017) Quality properties and antioxidant activity of seven strawberry (Fragaria x ananassa duch) cultivars. Sci Hortic 225:293–298. https://doi.org/10.1016/j.scienta.2017.07.013

    CAS  Article  Google Scholar 

  20. 20.

    Ali S, Lebel C, Bondy S (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology 13:637–648

    CAS  PubMed  Google Scholar 

  21. 21.

    Stuehr D, Nathan C (1989) Nitric oxide: a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555. https://doi.org/10.1084/jem.169.5.1543

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145. https://doi.org/10.1016/s0304-3940(01)01636-6

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. https://doi.org/10.1016/0076-6879(90)86134-H

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Article  Google Scholar 

  25. 25.

    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 17:88–95. https://doi.org/10.1016/0006-2952(61)90145

    Article  Google Scholar 

  27. 27.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Article  Google Scholar 

  28. 28.

    Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  Google Scholar 

  29. 29.

    Sankowski R, Mader S, Valdés-Ferrer SI (2015) Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci 9:28. https://doi.org/10.3389/fncel.2015.00028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wang J, Song Y, Chen Z, Leng SX (2018) Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases. Oxid Med Cell Longev 2018:1972714. https://doi.org/10.1155/2018/1972714

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Haddad JJ, Fahlman CS (2002) Redox- and oxidant-mediated regulation of interleukin-10: an anti-inflammatory, antioxidant cytokine? Biochem Biophys Res Commun 297:163–176. https://doi.org/10.1016/s0006-291x(02)02094-6

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Akarsu ES, Mamuk S (2007) Escherichia coli lipopolysaccharides produce serotype-specific hypothermic response in biotelemetered rats. Am J Physiol Regul Integr Comp Physiol 292:R1846–R1850. https://doi.org/10.1152/ajpregu.00786.2006

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Mao X, Sarkar S, Chang SL (2013) Involvement of the NLRP3 inflammasome in the modulation of an LPS-induced inflammatory response during morphine tolerance. Drug Alcohol Depend 132:38–46. https://doi.org/10.1016/j.drugalcdep.2012.12.022

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Yuan Z, Zhang H, Hasnat M, Ding J, Chen X, Liang P, Sun L, Zhang L, Jiang Z (2019) A new perspective of triptolide-associated hepatotoxicity: liver hypersensitivity upon LPS stimulation. Toxicology 15(414):45–56. https://doi.org/10.1016/j.tox.2019.01.005

    CAS  Article  Google Scholar 

  35. 35.

    Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev 2015:610813. https://doi.org/10.1155/2015/610813

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Spencer JP, Vafeiadou K, Williams RJ, Vauzour D (2012) Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 33:83–97. https://doi.org/10.1016/j.mam.2011.10.016

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Vauzour D (2014) Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer’s disease pathophysiology. J Sci Food Agric 94:1042–1056. https://doi.org/10.1002/jsfa.6473

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Forman HJ, Davies KJA, Ursini F (2014) How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 66:24–35. https://doi.org/10.1016/j.freeradbiomed.2013.05.045

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Amin FU, Shah SA, Badshah H, Khan M, Kim MO (2017) Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ 1–42-induced oxidative stress. J Nanobiotechnology 15:12. https://doi.org/10.1186/s12951-016-0227-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bal-Price A, Matthias A, Brown GC (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem 80:73–80. https://doi.org/10.1046/j.0022-3042.2001.00675.x

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355. https://doi.org/10.1385/MN:27:3:325

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA, O’Leary JM, Milbury PE (2008) Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem 56:705–712. https://doi.org/10.1021/jf071998l

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Spohr L, Luduvico KP, Soares MSP, Bona NP, Oliveira PS, de Mello JE, Alvez FL, Teixeira FC, Felix AOC, Stefanello FM, Spanevello RM (2020) Blueberry extract as a potential pharmacological tool for preventing depressive-like behavior and neurochemical dysfunctions in mice exposed to lipopolysaccharide. Nutr Neurosci 21:1–14. https://doi.org/10.1080/1028415X.2020.1819104

    Article  Google Scholar 

  44. 44.

    Maurer SV, Williams CL (2017) The cholinergic system modulates memory and hippocampal plasticity via its interactions with non-neuronal cells. Front Immunol 8:1489. https://doi.org/10.3389/fimmu.2017.01489

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Khan H, Marya AS, Kamal MA, Patel S (2018) Flavonoids as acetylcholinesterase inhibitors: current therapeutic standing and future prospects. Biomed Pharmacother 101:860–870. https://doi.org/10.1016/j.biopha.2018.03.007

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Pacheco SM, Azambuja JH, de Carvalho TR, Soares MSP, Oliveira PS, da Silveira EF, Stefanello FM, Braganhol E, Gutierres JM, Spanevello RM (2018) Glioprotective effects of lingonberry extract against altered cellular viability, acetylcholinesterase activity, and oxidative stress in lipopolysaccharide-treated astrocytes. Cell Mol Neurobiol 38:1107–1121. https://doi.org/10.1007/s10571-018-0581-x

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Brazilian funding agencies CNPq, CAPES and FAPERGS. This study was financed in part by CAPES—Finance code 001. VCC, KPL, FHR and CMOS were also grateful for their research fellowships (CNPq).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mayara Sandrielly Pereira Soares.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

The protocols were approved by the Committee of Ethics and Animal Experimentation of the Federal University of Pelotas, RS, Brazil (protocol number: CEEA 3781/2017). All animal experiments were carried out in accordance with the National Institutes of Health guidelines for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soares, M.S.P., Luduvico, K.P., Chaves, V.C. et al. The Protective Action of Rubus sp. Fruit Extract Against Oxidative Damage in Mice Exposed to Lipopolysaccharide. Neurochem Res (2021). https://doi.org/10.1007/s11064-021-03248-7

Download citation

Keywords

  • Blackberry
  • Neuroinflammation
  • Anthocyanins
  • Mice