Hypermethylation of Mitochondrial Cytochrome b and Cytochrome c Oxidase II Genes with Decreased Mitochondrial DNA Copy Numbers in the APP/PS1 Transgenic Mouse Model of Alzheimer’s Disease


Alzheimer’s disease (AD) is the most common cause of dementia. Increasing evidence shows that mitochondrial DNA (mtDNA) methylation plays an essential role in many diseases related to mitochondrial dysfunction. Since mitochondrial impairment is a key feature of AD, mtDNA methylation may also contribute to AD, but few studies have addressed this issue. Methylation changes of the mitochondrial cytochrome b (CYTB) and cytochrome c oxidase II (COX II) genes in AD have not been reported. We analyzed mtDNA methylation changes of the CYTB and COX II genes in an APP/PS1 transgenic mouse model of AD using pyrosequencing. We examined mtDNA copy numbers and the levels of expression by quantitative real-time PCR. Average methylation levels of different CpG sites were ≤ 4.0%. Methylated mtDNA accounted for only a small part of the total mtDNA. We also observed hypermethylation of mitochondrial CYTB and COX II genes with decreased mtDNA copy numbers and expression in the hippocampi of APP/PS1 transgenic mice. mtDNA methylation may play an important role in AD pathology, which may open a new window for AD therapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement 12(4):459–509

    Google Scholar 

  2. 2.

    World Alzheimer Report 2018, Alzheimer’s Disease International, 2018: pp 1–48

  3. 3.

    Rigotto G, Basso E (2019) Mitochondrial dysfunctions: a thread sewing together alzheimer’s disease, diabetes, and obesity. Oxid Med Cell Longev 2019:7210892

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Joe E, Ringman JM (2019) Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ 367:l6217

    PubMed  Google Scholar 

  5. 5.

    Hroudová J, Singh N, Fišar Z (2014) Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int 2014:175062

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Devall M, Mill J, Lunnon K (2014) The mitochondrial epigenome: a role in Alzheimer’s disease? Epigenomics 6(6):665–675

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Devall M et al (2016) Epigenetic regulation of mitochondrial function in neurodegenerative disease: New insights from advances in genomic technologies. Neurosci Lett 625:47–55

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kelly RD et al (2012) Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 40(20):10124–10138

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ghosh S et al (2015) Mitoepigenetics: The different shades of grey. Mitochondrion 25:60–66

    CAS  PubMed  Google Scholar 

  10. 10.

    Iacobazzi V et al (2013) Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 110:25–34

    CAS  PubMed  Google Scholar 

  11. 11.

    Phillips NR, Simpkins JW, Roby RK (2014) Mitochondrial DNA deletions in Alzheimer’s brains: a review. Alzheimer’s Dementia 10(3):393–400

    PubMed  Google Scholar 

  12. 12.

    Dong Z, Pu L, Cui H (2020) Mitoepigenetics and its emerging roles in cancer. Front Cell Dev Biol 8:4

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Romano G et al (2018) RNA methylation in ncRNA: classes, detection, and molecular associations. Front Genet 9:243

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Shock LS et al (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 108(9):3630–3635

    CAS  PubMed  Google Scholar 

  15. 15.

    Infantino V et al (2011) Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol Genet Metab 102(3):378–382

    CAS  PubMed  Google Scholar 

  16. 16.

    Coppedè F, Stoccoro A (2019) Mitoepigenetics and neurodegenerative diseases. Front Endocrinol 10:86

    Google Scholar 

  17. 17.

    Stoccoro A et al (2018) Mitochondrial DNA copy number and D-loop region methylation in carriers of amyotrophic lateral sclerosis gene mutations. Epigenomics 10(11):1431–1443

    CAS  PubMed  Google Scholar 

  18. 18.

    Mishra M, Kowluru RA (2015) Epigenetic modification of mitochondrial DNA in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 56(9):5133–5142

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pirola CJ et al (2013) Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 62(9):1356–1363

    CAS  PubMed  Google Scholar 

  20. 20.

    Blanch M et al (2016) Altered mitochondrial DNA methylation pattern in alzheimer disease-related pathology and in Parkinson disease. Am J Pathol 186(2):385–397

    CAS  PubMed  Google Scholar 

  21. 21.

    van der Wijst MG, Rots MG (2015) Mitochondrial epigenetics: an overlooked layer of regulation? Trends Genet 31(7):353–356

    PubMed  Google Scholar 

  22. 22.

    Feng S et al (2012) Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep 6(1):125–130

    CAS  PubMed  Google Scholar 

  23. 23.

    Sanyal T et al (2018) Hypomethylation of mitochondrial D-loop and ND6 with increased mitochondrial DNA copy number in the arsenic-exposed population. Toxicology 408:54–61

    CAS  PubMed  Google Scholar 

  24. 24.

    Stoccoro A et al (2017) Decreased methylation of the mitochondrial D-loop region in late-onset Alzheimer’s disease. J Alzheimer’s Dis 59(2):559–564

    CAS  Google Scholar 

  25. 25.

    Xu Y et al (2019) Altered mitochondrial DNA methylation and mitochondrial DNA copy number in an APP/PS1 transgenic mouse model of Alzheimer disease. Biochem Biophys Res Commun 520(1):41–46

    CAS  PubMed  Google Scholar 

  26. 26.

    Baccarelli AA, Byun HM (2015) Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease. Clin Epigenet 7:44

    Google Scholar 

  27. 27.

    Baek JH et al (2019) Chronological aging standard curves of telomere length and mitochondrial DNA copy number in twelve tissues of C57BL/6 male mouse. Cells 8(3):247

    CAS  PubMed Central  Google Scholar 

  28. 28.

    Podlesniy P et al (2013) Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol 74:655–668

    CAS  PubMed  Google Scholar 

  29. 29.

    Schefe JH et al (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med 84(11):901–910

    CAS  PubMed  Google Scholar 

  30. 30.

    Tong H et al (2017) Methylation of mitochondrial DNA displacement loop region regulates mitochondrial copy number in colorectal cancer. Mol Med Rep 16(4):5347–5353

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wen SL, Zhang F, Feng S (2013) Decreased copy number of mitochondrial DNA: a potential diagnostic criterion for gastric cancer. Oncol Lett 6(4):1098–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gao J et al (2015) De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. Mol Med Rep 12(5):7033–7038

    CAS  PubMed  Google Scholar 

  33. 33.

    Cui D, Xu X (2018) DNA methyltransferases, DNA methylation, and age-associated cognitive function. Int J Mol Sci 19(5):1315

    PubMed Central  Google Scholar 

  34. 34.

    Sanchez-Mut JV, Gräff J (2015) Epigenetic alterations in Alzheimer’s disease. Front Behav Neurosci 9:347

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Breton CV et al (2019) Effects of air pollution on mitochondrial function, mitochondrial DNA methylation, and mitochondrial peptide expression. Mitochondrion 46:22–29

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Byun HM, Barrow TM (2015) Analysis of pollutant-induced changes in mitochondrial DNA methylation. Methods Mol Biol (Clifton, N.J.) 1265:271–283

    CAS  Google Scholar 

  37. 37.

    D’Aquila P et al (2015) Age-and gender-related pattern of methylation in the MT-RNR1 gene. Epigenomics 7(5):707–716

    CAS  PubMed  Google Scholar 

  38. 38.

    Yang XH, Trumpower BL (1986) Purification of a three-subunit ubiquinol-cytochrome c oxidoreductase complex from Paracoccus denitrificans. J Biol Chem 261(26):12282–12289

    CAS  PubMed  Google Scholar 

  39. 39.

    D’Aquila P et al (2017) Mitochondrial genome and epigenome: two sides of the same coin. Front Biosci 22:888–908

    CAS  Google Scholar 

  40. 40.

    Timón-Gómez A et al (2018) Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev Biol 76:163–178

    PubMed  Google Scholar 

  41. 41.

    Byun HM et al (2015) Epigenetic effects of low perinatal doses of flame retardant BDE-47 on mitochondrial and nuclear genes in rat offspring. Toxicology 328:152–159

    CAS  PubMed  Google Scholar 

  42. 42.

    Pflueger C, Swain T, Lister R (2019) Harnessing targeted DNA methylation and demethylation using dCas9. Essays Biochem 63(6):813–825

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant No. 81870848) and the Key Research and Development Program of Shandong Province (Grant No. 2017GSF218046).

Author information



Corresponding authors

Correspondence to Chao Lai or Yun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Cheng, L., Sun, J. et al. Hypermethylation of Mitochondrial Cytochrome b and Cytochrome c Oxidase II Genes with Decreased Mitochondrial DNA Copy Numbers in the APP/PS1 Transgenic Mouse Model of Alzheimer’s Disease. Neurochem Res 46, 564–572 (2021). https://doi.org/10.1007/s11064-020-03192-y

Download citation


  • Alzheimer’s disease
  • Mitoepigenetics
  • Mitochondrial DNA methylation
  • Electron transport chain
  • Pyrosequencing