Skip to main content

Advertisement

Log in

Bexarotene Attenuates Focal Cerebral Ischemia–Reperfusion Injury via the Suppression of JNK/Caspase-3 Signaling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Apolipoprotein E (APOE) is implicated not only in chronic degenerative neurological diseases, such as Alzheimer's disease, but also in acute brain disorders, including traumatic brain injury. Bexarotene, a selective agonist of the retinoid X receptor, has been reported to enhance markedly the expression of APOE. Previous studies have indicated that bexarotene exerts neuroprotective effects in animal models of ischemic stroke by modulating the peripheral immune response and autophagy. However, the role of this drug in neuronal apoptosis and the potential mechanisms involved have yet to be elucidated. The present study employed transient middle cerebral artery occlusion (t-MCAO) as a model of acute cerebral ischemia/reperfusion injury. The experiments were performed in wild-type C57BL/6 mice and APOE gene knockout (APOE-KO) mice. After t-MCAO, mice received intraperitoneal injection of bexarotene (5 mg/kg) or an equal volume of the vehicle. The outcome measurements included neurological deficits, learning ability, spatial memory, infarct volume, histopathology, magnitude of apoptosis, and the level of expression of proteins of the JNK/caspase-3 signaling pathway. The obtained results demonstrated that bexarotene administration significantly improved neurological function, learning ability, and spatial memory in C57BL/6 mice, but not in APOE-KO mice. Infarct volume, tissue damage, neuronal apoptosis rate, and the expression of proteins involved in the JNK/caspase-3 signaling pathway were markedly increased after t-MCAO in both C57BL/6 and APOE-KO mice. Importantly, bexarotene treatment significantly ameliorated all these changes in C57BL/6, but not in APOE-KO mice. In conclusion, bexarotene markedly alleviates the neurological deficits, improves the histological outcome, and inhibits cell apoptosis in mice after t-MCAO. This effect is mediated, at least in part, by up-regulation of APOE. Thus, bexarotene may be a candidate drug for the treatment of cerebral ischemia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Flynn RW, MacWalter RS, Doney AS (2008) The cost of cerebral ischaemia. Neuropharmacology 55:250–256

    Article  CAS  Google Scholar 

  2. Fonarow GC, Reeves MJ, Zhao X, Olson DM, Smith EE, Saver JL, Schwamm LH, Get With the Guidelines-Stroke Steering Committee and Investigators (2010) Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke. Circulation 121:879–891

    Article  Google Scholar 

  3. Huuskonen MT, Loppi S, Dhungana H, Keksa-Goldsteine V, Lemarchant S, Korhonen P, Wojciechowski S, Pollari E, Valonen P, Koponen J, Takashima A, Landreth G, Goldsteins G, Malm T, Koistinaho J, Kanninen KM (2016) Bexarotene targets autophagy and is protective against thromboembolic stroke in aged mice with tauopathy. Sci Rep 6:33176

    Article  CAS  Google Scholar 

  4. Xu L, Cao F, Xu F, He B, Dong Z (2015) Bexarotene reduces blood-brain barrier permeability in cerebral ischemia-reperfusion injured rats. PLoS ONE 10:e0122744

    Article  Google Scholar 

  5. Lynch JR, Morgan D, Mance J, Matthew WD, Laskowitz DT (2001) Apolipoprotein E modulates glial activation and the endogenous central nervous system inflammatory response. J Neuroimmunol 114:107–113

    Article  CAS  Google Scholar 

  6. Lomnitski L, Chapman S, Hochman A, Kohen R, Shohami E, Chen Y, Trembovler V, Michaelson DM (1999) Antioxidant mechanisms in apolipoprotein E deficient mice prior to and following closed head injury. Biochim Biophys Acta 1453:359–368

    Article  CAS  Google Scholar 

  7. Zhou S, Wu H, Zeng C, Xiong X, Tang S, Tang Z, Sun X (2013) Apolipoprotein E protects astrocytes from hypoxia and glutamate-induced apoptosis. FEBS Lett 587:254–258

    Article  CAS  Google Scholar 

  8. Osada N, Kosuge Y, Kihara T, Ishige K, Ito Y (2009) Apolipoprotein E-deficient mice are more vulnerable to ER stress after transient forebrain ischemia. Neurochem Int 54:403–409

    Article  CAS  Google Scholar 

  9. Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335:1503–1506

    Article  CAS  Google Scholar 

  10. McFarland K, Spalding TA, Hubbard D, Ma JN, Olsson R, Burstein ES (2013) Low dose bexarotene treatment rescues dopamine neurons and restores behavioral function in models of Parkinson's disease. ACS Chem Neurosci 4:1430–1438

    Article  CAS  Google Scholar 

  11. Riancho J, Ruiz-Soto M, Berciano MT, Berciano J, Lafarga M (2015) Neuroprotective effect of bexarotene in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 9:250

    Article  Google Scholar 

  12. Tunctan B, Kucukkavruk SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S (2018) Bexarotene, a selective RXRalpha agonist, reverses hypotension associated with inflammation and tissue injury in a rat model of septic shock. Inflammation 41:337–355

    Article  CAS  Google Scholar 

  13. Certo M, Endo Y, Ohta K, Sakurada S, Bagetta G, Amantea D (2015) Activation of RXR/PPARgamma underlies neuroprotection by bexarotene in ischemic stroke. Pharmacol Res 102:298–307

    Article  CAS  Google Scholar 

  14. Zhong J, Cheng C, Liu H, Huang Z, Wu Y, Teng Z, He J, Zhang H, Wu J, Cao F, Jiang L, Sun X (2017) Bexarotene protects against traumatic brain injury in mice partially through apolipoprotein E. Neuroscience 343:434–448

    Article  CAS  Google Scholar 

  15. Sugo N, Hurn PD, Morahan MB, Hattori K, Traystman RJ, DeVries AC (2002) Social stress exacerbates focal cerebral ischemia in mice. Stroke 33:1660–1664

    Article  Google Scholar 

  16. Bachmeier C, Beaulieu-Abdelahad D, Crawford F, Mullan M, Paris D (2013) Stimulation of the retinoid X receptor facilitates beta-amyloid clearance across the blood–brain barrier. J Mol Neurosci 49:270–276

    Article  CAS  Google Scholar 

  17. Yang Y, Liu P, Chen L, Liu Z, Zhang H, Wang J, Sun X, Zhong W, Wang N, Tian K, Zhao J (2013) Therapeutic effect of Ginkgo biloba polysaccharide in rats with focal cerebral ischemia/reperfusion (I/R) injury. Carbohydr Polym 98:1383–1388

    Article  CAS  Google Scholar 

  18. Sapkota A, Gaire BP, Cho KS, Jeon SJ, Kwon OW, Jang DS, Kim SY, Ryu JH, Choi JW (2017) Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS One 12:e0171479

    Article  Google Scholar 

  19. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688

    Article  CAS  Google Scholar 

  20. Hamm RJ, Pike BR, O'Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11:187–196

    Article  CAS  Google Scholar 

  21. He J, Liu H, Zhong J, Guo Z, Wu J, Zhang H, Huang Z, Jiang L, Li H, Zhang Z, Liu L, Wu Y, Qi L, Sun X, Cheng C (2018) Bexarotene protects against neurotoxicity partially through a PPARgamma-dependent mechanism in mice following traumatic brain injury. Neurobiol Dis 117:114–124

    Article  CAS  Google Scholar 

  22. Luo Y, Kuang S, Li H, Ran D, Yang J (2017) cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress. Oncotarget 8:35558–35572

    PubMed  PubMed Central  Google Scholar 

  23. Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17:1048–1056

    Article  CAS  Google Scholar 

  24. Bomben V, Holth J, Reed J, Cramer P, Landreth G, Noebels J (2014) Bexarotene reduces network excitability in models of Alzheimer's disease and epilepsy. Neurobiol Aging 35:2091–2095

    Article  CAS  Google Scholar 

  25. Rosell A, Agin V, Rahman M, Morancho A, Ali C, Koistinaho J, Wang X, Vivien D, Schwaninger M, Montaner J (2013) Distal occlusion of the middle cerebral artery in mice: are we ready to assess long-term functional outcome? Transl Stroke Res 4:297–307

    Article  Google Scholar 

  26. Pineiro R, Pendlebury ST, Smith S, Flitney D, Blamire AM, Styles P, Matthews PM (2000) Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke 31:672–679

    Article  CAS  Google Scholar 

  27. Thirugnanachandran T, Ma H, Singhal S, Slater LA, Davis SM, Donnan GA, Phan T (2018) Refining the ischemic penumbra with topography. Int J Stroke 13:277–284

    Article  Google Scholar 

  28. Petralia RS, Mattson MP, Yao PJ (2014) Communication breakdown: the impact of ageing on synapse structure. Ageing Res Rev 14:31–42

    Article  CAS  Google Scholar 

  29. Jin R, Liu L, Zhang S, Nanda A, Li G (2013) Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 6:834–851

    Article  Google Scholar 

  30. Tachibana M, Shinohara M, Yamazaki Y, Liu CC, Rogers J, Bu G, Kanekiyo T (2016) Rescuing effects of RXR agonist bexarotene on aging-related synapse loss depend on neuronal LRP1. Exp Neurol 277:1–9

    Article  CAS  Google Scholar 

  31. Boehm-Cagan A, Michaelson DM (2014) Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. J Neurosci 34:7293–7301

    Article  CAS  Google Scholar 

  32. Fuentes D, Fernandez N, Garcia Y, Garcia T, Morales AR, Menendez R (2018) Age-related changes in the behavior of apolipoprotein E knockout mice. Behav Sci (Basel). https://doi.org/10.3390/bs8030033

    Article  Google Scholar 

  33. Chen Y, Lomnitski L, Michaelson DM, Shohami E (1997) Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury. Neuroscience 80:1255–1262

    Article  CAS  Google Scholar 

  34. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV (2012) Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485:512–516

    Article  CAS  Google Scholar 

  35. Mehan S, Meena H, Sharma D, Sankhla R (2011) JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer's and various neurodegenerative abnormalities. J Mol Neurosci 43:376–390

    Article  CAS  Google Scholar 

  36. Yang L, Liu CC, Zheng H, Kanekiyo T, Atagi Y, Jia L, Wang D, N'Songo A, Can D, Xu H, Chen XF, Bu G (2016) LRP1 modulates the microglial immune response via regulation of JNK and NF-kappaB signaling pathways. J Neuroinflammation 13:304

    Article  Google Scholar 

  37. Wu Y, Pang J, Peng J, Cao F, Vitek MP, Li F, Jiang Y, Sun X (2016) An apoE-derived mimic peptide, COG1410, alleviates early brain injury via reducing apoptosis and neuroinflammation in a mouse model of subarachnoid hemorrhage. Neurosci Lett 627:92–99

    Article  CAS  Google Scholar 

  38. Hoe HS, Harris DC, Rebeck GW (2005) Multiple pathways of apolipoprotein E signaling in primary neurons. J Neurochem 93:145–155

    Article  CAS  Google Scholar 

  39. Liu B, Li F, Shi J, Yang D, Deng Y, Gong Q (2016) Gastrodin ameliorates subacute phase cerebral ischemiareperfusion injury by inhibiting inflammation and apoptosis in rats. Mol Med Rep 14:4144–4152

    Article  CAS  Google Scholar 

  40. Liu G, Wang T, Wang T, Song J, Zhou Z (2013) Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on cerebral ischemia rats. Biomed Rep 1:861–867

    Article  CAS  Google Scholar 

  41. Na KS, Park BC, Jang M, Cho S, Lee DH, Kang S, Lee CK, Bae KH, Park SG (2007) Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis. Mol Cells 24:261–267

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the Chongqing Science Technology Commission of China (Grants Nos. cstc2015zdcy-ztzx120003, CSTC 2016jcyjA0268, and CSTC2018jcyjAX0821) and the Chongqing Municipal Health Bureau (Grant No. 2014-2-223).

Author information

Authors and Affiliations

Authors

Contributions

LX made a substantial contribution to the conception, design, and execution of the study. HL, JC, XH, RJ, QL, ZF, SW, QZ, YL, WD, and ZD participated in performing the experiments and carried out data analysis. HL participated in the performance of the study and writing the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Lu Xu or Zhi Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, S., Tian, X. et al. Bexarotene Attenuates Focal Cerebral Ischemia–Reperfusion Injury via the Suppression of JNK/Caspase-3 Signaling Pathway. Neurochem Res 44, 2809–2820 (2019). https://doi.org/10.1007/s11064-019-02902-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02902-5

Keywords

Navigation