Skip to main content

Advertisement

Log in

PKC Mediates LPS-Induced IL-1β Expression and Participates in the Pro-inflammatory Effect of A2AR Under High Glutamate Concentrations in Mouse Microglia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pathogens such as bacterial lipopolysaccharide (LPS) play an important role in promoting the production of the inflammatory cytokines interleukin-1 beta (IL-1β) and tumour necrosis factor-α (TNF-α) in response to infection or damage in microglia. However, whether different signalling pathways regulate these two inflammatory factors remains unclear. The protein kinase C (PKC) family is involved in the regulation of inflammation, and our previous research showed that the activation of the PKC pathway played a key role in the LPS-induced transformation of the adenosine A2A receptor (A2AR) from anti-inflammatory activity to pro-inflammatory activity under high glutamate concentrations. Therefore, in the current study, we investigated the role of PKC in the LPS-induced production of these inflammatory cytokines in mouse primary microglia. GF109203X, a specific PKC inhibitor, inhibited the LPS-induced expression of IL-1β messenger ribonucleic acid and intracellular protein in a dose-dependent manner. Moreover, 5 µM GF109203X prevented LPS-induced IL-1β expression but did not significantly affect LPS-induced TNF-α expression. PKC promoted IL-1β expression by regulating the activity of NF-κB but did not significantly impact the activity of ERK1/2. A2AR activation by CGS21680, an A2AR agonist, facilitated LPS-induced IL-1β expression through the PKC pathway at high glutamate concentrations but did not significantly affect LPS-induced TNF-α expression. Taken together, these results suggest a new direction for specific intervention with LPS-induced inflammatory factors in response to specific signalling pathways and provide a mechanism for A2AR targeting, especially after brain injury, to influence inflammation by interfering with A2AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

IL-1β:

Interleukin-1 beta

TNF-α:

Tumour necrosis factor-α

TBI:

Traumatic brain injury

NF-κB:

Nuclear factor- kappa-B

A2AR:

Adenosine A2A receptor

ERK1/2:

Extracellular regulated protein kinases 1/2

MAPK:

Mitogen-activated protein kinase

TLR4:

Toll-like receptor 4

MyD88:

Myeloid differentiation primary response 88

Iba-1:

Ionized calcium-binding adaptor molecule 1

DABK:

des-Arginine9-bradykinin

References

  1. Bachiller S et al (2018) Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 12:488

    PubMed  PubMed Central  Google Scholar 

  2. Kettenmann H et al (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    CAS  PubMed  Google Scholar 

  3. Norris GT, Kipnis J (2019) Immune cells and CNS physiology: microglia and beyond. J Exp Med 216(1):60–70

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783

    CAS  PubMed  Google Scholar 

  5. Moller B, Villiger PM (2006) Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. Springer Semin Immunopathol 27(4):391–408

    PubMed  Google Scholar 

  6. Li T et al (2019) Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4-MyD88-mediated NF-kB and MAPK signaling pathways. Phytother Res 33(3):756–767

    CAS  PubMed  Google Scholar 

  7. Huang X et al (2009) An atypical protein kinase C (PKC zeta) plays a critical role in lipopolysaccharide-activated NF-kB in human peripheral blood monocytes and macrophages. J Immunol 182(9):5810–5815

    CAS  PubMed  Google Scholar 

  8. Taupin V et al (1993) Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J Neuroimmunol 42(2):177–185

    CAS  PubMed  Google Scholar 

  9. Dalgard CL et al (2012) The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 5:6

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Newton AC (2018) Protein kinase C: perfectly balanced. Crit Rev Biochem Mol Biol 53(2):208–230

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia-Bernal F et al (2018) Protein kinase C inhibition mediates neuroblast enrichment in mechanical brain injuries. Front Cell Neurosci 12:462

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao EY et al (2016) The role of Akt (protein kinase B) and protein kinase C in ischemia–reperfusion injury. Neurol Res 38(4):301–308

    CAS  PubMed  Google Scholar 

  13. Ma Y et al (2015) Protein kinase cα regulates the expression of complement receptor Ig in human monocyte-derived macrophages. J Immunol 194(6):2855–2861

    CAS  PubMed  Google Scholar 

  14. Yu W et al (2017) Fumigaclavine C exhibits anti-inflammatory effects by suppressing high mobility group box protein 1 relocation and release. Eur J Pharmacol 812:234–242

    CAS  PubMed  Google Scholar 

  15. Gordon R et al (2016) Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease. Neurobiol Dis 93:96–114

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sejimo S, Hossain MS, Akashi K (2018) Scallop-derived plasmalogens attenuate the activation of PKCδ associated with the brain inflammation. Biochem Biophys Res Commun 503(2):837–842

    CAS  PubMed  Google Scholar 

  17. Yang J et al (2015) Perfluorooctane sulfonate mediates microglial activation and secretion of TNF-α through Ca(2)(+)-dependent PKC-NF-small ka, CyrillicB signaling. Int Immunopharmacol 28(1):52–60

    CAS  PubMed  Google Scholar 

  18. Kim DC et al (2005) Effect of rottlerin, a PKC-δ inhibitor, on TLR-4-dependent activation of murine microglia. Biochem Biophys Res Commun 337(1):110–115

    CAS  PubMed  Google Scholar 

  19. Santiago AR et al (2014) Role of microglia adenosine A(2A) receptors in retinal and brain neurodegenerative diseases. Mediators Inflamm 2014:465694

    PubMed  PubMed Central  Google Scholar 

  20. Dai SS et al (2010) Local glutamate level dictates adenosine A2A receptor regulation of neuroinflammation and traumatic brain injury. J Neurosci 30(16):5802–5810

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai SS et al (2013) Plasma glutamate-modulated interaction of A2AR and mGluR5 on BMDCs aggravates traumatic brain injury-induced acute lung injury. J Exp Med 210(4):839–851

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wardas J, Konieczny J, Pietraszek M (2003) Influence of CGS 21680, a selective adenosine A(2A) agonist, on the phencyclidine-induced sensorimotor gating deficit and motor behaviour in rats. Psychopharmacology 168(3):299–306

    CAS  PubMed  Google Scholar 

  23. Saura J et al (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J Neurochem 95(4):919–929

    CAS  PubMed  Google Scholar 

  24. Papa S et al (2013) Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury. ACS Nano 7(11):9881–9895

    CAS  PubMed  Google Scholar 

  25. Nakajima K et al (2003) Activation of microglia with lipopolysaccharide leads to the prolonged decrease of conventional protein kinase C activity. Brain Res Mol Brain Res 110(1):92–99

    CAS  PubMed  Google Scholar 

  26. Sharma N, Sharma S, Nehru B (2017) Curcumin protects dopaminergic neurons against inflammation-mediated damage and improves motor dysfunction induced by single intranigral lipopolysaccharide injection. Inflammopharmacology 25(3):351–368

    CAS  PubMed  Google Scholar 

  27. Jayaprakash K et al (2017) PKC, ERK/p38 MAP kinases and NF-kB targeted signalling play a role in the expression and release of IL-1β and CXCL8 in Porphyromonas gingivalis-infected THP1 cells. APMIS 125(7):623–633

    CAS  PubMed  Google Scholar 

  28. Hua KF et al (2012) High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-α/δ and NF-kB. Inflamm Res 61(10):1107–1116

    CAS  PubMed  Google Scholar 

  29. Song XM et al (2017) Aldose reductase inhibitors attenuate β-amyloid-induced TNF-α production in microlgia via ROS-PKC-mediated NF-kB and MAPK pathways. Int Immunopharmacol 50:30–37

    CAS  PubMed  Google Scholar 

  30. Shin EJ et al (2016) PKCδ knockout mice are protected from para-methoxymethamphetamine-induced mitochondrial stress and associated neurotoxicity in the striatum of mice. Neurochem Int 100:146–158

    CAS  PubMed  Google Scholar 

  31. Hoogland IC et al (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114

    PubMed  PubMed Central  Google Scholar 

  32. Norden DM et al (2016) Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia 64(2):300–316

    PubMed  Google Scholar 

  33. Sun X et al (2018) Glycyrrhizin ameliorates inflammatory pain by inhibiting microglial activation-mediated inflammatory response via blockage of the HMGB1-TLR4-NF-kB pathway. Exp Cell Res 369(1):112–119

    CAS  PubMed  Google Scholar 

  34. Markoutsa E, Xu P (2017) Redox potential-sensitive N-acetyl cysteine-prodrug nanoparticles inhibit the activation of microglia and improve neuronal survival. Mol Pharm 14(5):1591–1600

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Meotti FC et al (2017) The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice. Biochem Pharmacol 125:75–83

    CAS  PubMed  Google Scholar 

  36. Hsia CH et al (2018) Mechanisms of TQ-6, a novel ruthenium-derivative compound, against lipopolysaccharide-induced in vitro macrophage activation and liver injury in experimental mice: the crucial role of p38 MAPK and NF-kB signaling. Cells 7(11):217

    CAS  PubMed Central  Google Scholar 

  37. Muili KA et al (2013) Pancreatic acinar cell nuclear factor kB activation because of bile acid exposure is dependent on calcineurin. J Biol Chem 288(29):21065–21073

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chai W et al (2013) Pyocyanin from Pseudomonas induces IL-8 production through the PKC and NF-kappaB pathways in U937 cells. Mol Med Rep 8(5):1404–1410

    CAS  PubMed  Google Scholar 

  39. Shi Y et al (2017) Activated niacin receptor HCA2 inhibits chemoattractant-mediated macrophage migration via Gβγ/PKC/ERK1/2 pathway and heterologous receptor desensitization. Sci Rep 7:42279

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mohanraj M et al (2018) The mycobacterial adjuvant analogue TDB attenuates neuroinflammation via mincle-independent PLC-gamma1/PKC/ERK signaling and microglial polarization. Mol Neurobiol 56(2):1167–1187

    PubMed  Google Scholar 

  41. Kontny E et al (2000) Rottlerin, a PKC isozyme-selective inhibitor, affects signaling events and cytokine production in human monocytes. J Leukoc Biol 67(2):249–258

    CAS  PubMed  Google Scholar 

  42. Pham TH et al (2017) Fargesin exerts anti-inflammatory effects in THP-1 monocytes by suppressing PKC-dependent AP-1 and NF-kB signaling. Phytomedicine 24:96–103

    CAS  PubMed  Google Scholar 

  43. He X et al (2012) Inhibitory effect of Astragalus polysaccharides on lipopolysaccharide-induced TNF-a and IL-1β production in THP-1 cells. Molecules 17(3):3155–3164

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Talwar H et al (2017) MKP-1 negatively regulates LPS-mediated IL-1β production through p38 activation and HIF-1α expression. Cell Signal 34:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomes CV et al (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808(5):1380–1399

    CAS  PubMed  Google Scholar 

  46. Madeira MH et al (2015) Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. J Neuroinflammation 12:115

    PubMed  PubMed Central  Google Scholar 

  47. Borroto-Escuela DO et al (2018) Understanding the role of adenosine A2AR heteroreceptor complexes in neurodegeneration and neuroinflammation. Front Neurosci 12:43

    PubMed  PubMed Central  Google Scholar 

  48. Chiu GS et al (2014) Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety. Brain Behav Immun 41:218–231

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Inhibition of PKC abrogates changes in microglial morphology after LPS stimulation. Morphological changes with LPS stimulation in microglia after PKC inhibition (a). Nuclei are labelled with DAPI (blue), and Iba-1 is indicated by red fluorescence; scale bar = 50 µm. Evaluation of microglial cell sphericity (an index of cell activation) in four different groups.*P < 0.05 and **P < 0.01 compared with the LPS stimulation group; #P < 0.05 and ##P < 0.01 compared with the untreated control group. Supplementary material 1 (TIF 7591.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, SY., Xiong, RP., Peng, Y. et al. PKC Mediates LPS-Induced IL-1β Expression and Participates in the Pro-inflammatory Effect of A2AR Under High Glutamate Concentrations in Mouse Microglia. Neurochem Res 44, 2755–2764 (2019). https://doi.org/10.1007/s11064-019-02895-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02895-1

Keywords

Navigation