Skip to main content
Log in

CXCL1 and CXCL2 Inhibit the Axon Outgrowth in a Time- and Cell-Type-Dependent Manner in Adult Rat Dorsal Root Ganglia Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The ability to regrow their axons after an injury is a hallmark of neurons in peripheral nervous system which distinguish them from central nervous system neurons. This ability is influenced by their intrinsic capacity to regrow and by the extracellular environment which needs to be supportive of regrowth. CXCL1 [Chemokine (C-X-C motif) Ligand 1] and CXCL2 [Chemokine (C-X-C motif) Ligand 2] are two low-molecular-weight chemokines which can influence neuronal proliferation, differentiation and neurogenesis, but which are also upregulated by injury or inflammation. In this study we investigated the effects of long-term incubation (24, 48 and 72 h) with different concentrations of CXCL1 (0.4, 4 or 40 nM) or CXCL2 (0.36, 3.6 or 36 nM) on the axon outgrowth of adult rat dorsal root ganglia neurons in culture. The results showed that both chemokines significantly inhibited the axon outgrowth, with large and medium NF200 (NeuroFilament 200) (+) dorsal root ganglia neurons affected quicker, compared to small IB4 (Isolectin B4) (+) dorsal root ganglia neurons which were affected after longer exposure. Blocking CXCR2 (C-X-C motif chemokine receptor 2) which mediates the effects of CXCL1 and CXCL2 prevented these effects, suggesting that CXCR2 may represent a new therapeutic target for promoting the axon outgrowth after a peripheral nerve injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9:668–676

    Article  CAS  PubMed  Google Scholar 

  2. Curcio M, Bradke F (2018) Axon regeneration in the central nervous system: facing the challenges from the inside. Annu Rev Cell Devl Biol 34:495–521

    Article  CAS  Google Scholar 

  3. Nguyen QT, Sanes JR, Lichtman JW (2002) Pre-existing pathways promote precise projection patterns. Nat Neurosci 5:861–867

    Article  CAS  Google Scholar 

  4. Lingappa JR, Zigmond RE (2013) Limited recovery of pineal function after regeneration of preganglionic sympathetic axons: evidence for loss of ganglionic synaptic specificity. J Neurosci 33:4867–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gordon T, Chan KM, Sulaiman OA, Udina E, Amirjani N, Brushart TM (2009) Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury. Neurosurgery 65:A132–144

    Article  PubMed  Google Scholar 

  6. Kwon MJ, Kim J, Shin H, Jeong SR, Kang YM, Choi JY, Hwang DH, Kim BG (2013) Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J Neurosci 33:15095–15108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE (2015) The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 302:174–203

    Article  CAS  PubMed  Google Scholar 

  8. Semple BD, Kossmann T, Morganti-Kossmann MC (2010) Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR8 and CXCL8/CXCR8 networks. J Cereb Blood Flow Metab 30:459–473

    Article  CAS  PubMed  Google Scholar 

  9. Call DR, Nemzek JA, Ebong SJ, Bolgos GR, Newcomb DE, Wollenberg GK, Remick DG (2001) Differential local and systemic regulation of the murine chemokines KC and MIP2. Shock 15:278–284

    Article  CAS  PubMed  Google Scholar 

  10. Rhodes JK, Sharkey J, Andrews PJ (2009) The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J Neurotrauma 26:507–525

    Article  PubMed  Google Scholar 

  11. Deftu A, Deftu A, Ristoiu V (2016) Long-term incubation with CXCL2, but not with CXCL1, alters the kinetics of TRPV1 receptors in cultured DRG neurons. Arch Biol Sci 69:53–59

    Article  Google Scholar 

  12. Bhardwaj D, Nager M, Camats J, David M, Benguria A, Dopazo A, Canti C, Herreros J (2013) Chemokines induce axon outgrowth downstream of hepatocyte growth factor and TCF/beta-catenin signaling. Front Cell Neurosci 7:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hobara N, Yoshida N, Goda M, Yokomizo A, Kitamura Y, Sendou T, Kawasaki H (2008) Neurotrophic effect of hepatic growth factor (HGF) on reinnervation of perivascular calcitonin gene-related peptide (CGRP)-containing nerves following phenol-induced nerve injury in the rat mesenteric artery. J Pharmacol Sci 108:495–504

    Article  CAS  PubMed  Google Scholar 

  14. Alkhatib B, Rosenzweig DH, Krock E, Roughley PJ, Beckman L, Steffen T, Weber MH, Ouellet JA, Haglund L (2014) Acute mechanical injury of the human intervertebral disc: link to degeneration and pain. Eur Cells Mater 28:98–110; discussion 110–111

  15. Omari KM, John G, Lango R, Raine CS (2006) Role for CXCR15 and CXCL1 on glia in multiple sclerosis. Glia 53:24–31

    Article  PubMed  Google Scholar 

  16. Karim H, Kim SH, Lapato AS, Yasui N, Katzenellenbogen JA, Tiwari-Woodruff SK (2018) Increase in chemokine CXCL1 by ERbeta ligand treatment is a key mediator in promoting axon myelination. Proc Natl Acad Sci USA 115:6291–6296

    Article  CAS  PubMed  Google Scholar 

  17. Deftu AF, Filippi A, Gheorghe RO, Ristoiu V (2018) CXCL1 activates TRPV1 via Gi/o protein and actin filaments. Life Sci 193:282–291

    Article  CAS  PubMed  Google Scholar 

  18. Deftu AF, Filippi A, Shibsaki K, Gheorghe RO, Chiritoiu M, Ristoiu V (2017) Chemokine (C-X-C motif) ligand 1 (CXCL1) and chemokine (C-X-C motif) ligand 2 (CXCL2) modulate the activity of TRPV1+/IB4+ cultured rat dorsal root ganglia neurons upon short-term and acute application. J Physiol Pharmacol 68:385–395

    CAS  PubMed  Google Scholar 

  19. Goswami C, Dreger M, Otto H, Schwappach B, Hucho F (2006) Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 96:254–266

    Article  CAS  PubMed  Google Scholar 

  20. Goswami C, Schmidt H, Hucho F (2007) TRPV1 at nerve endings regulates growth cone morphology and movement through cytoskeleton reorganization. FEBS J 274:760–772

    Article  CAS  PubMed  Google Scholar 

  21. Ristoiu V, Shibasaki K, Uchida K, Zhou Y, Ton BH, Flonta ML, Tominaga M (2011) Hypoxia-induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha and PKC. Pain 152:936–945

    Article  CAS  PubMed  Google Scholar 

  22. Dahlstrom M, Nordvall G, Sundstrom E, Akesson E, Tegerstedt G, Eriksdotter M, Forsell P (2019) Identification of amino acid residues of nerve growth factor important for neurite outgrowth in human dorsal root ganglion neurons. Eur J Neurosci. https://doi.org/10.1111/ejn.14513

    Article  PubMed  Google Scholar 

  23. Endo T, Kadoya K, Kawamura D, Iwasaki N (2019) Evidence for cell-contact factor involvement in neurite outgrowth of DRG neurons stimulated by Schwann cells. Exp Physiol. https://doi.org/10.1113/EP087634

    Article  PubMed  Google Scholar 

  24. Rangappa N, Romero A, Nelson KD, Eberhart RC, Smith GM (2000) Laminin-coated poly(L-lactide) filaments induce robust neurite growth while providing directional orientation. J Biomed Mater Res 51:625–634

    Article  CAS  PubMed  Google Scholar 

  25. Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM, Lu YJ, Zhong YQ, Hu XY, Hou R, Zhou BB, Bao L, Xiao HS, Zhang X (2016) Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 26:967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tucker BA, Rahimtula M, Mearow KM (2006) Laminin and growth factor receptor activation stimulates differential growth responses in subpopulations of adult DRG neurons. Eur J Neurosci 24:676–690

    Article  PubMed  Google Scholar 

  27. Stucky CL, Lewin GR (1999) Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J Neurosci 19:6497–6505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu K, Tedeschi A, Park KK, He Z (2011) Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 34:131–152

    Article  CAS  PubMed  Google Scholar 

  29. Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284:264–265

    Article  CAS  PubMed  Google Scholar 

  30. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science 214:931–933

    Article  CAS  PubMed  Google Scholar 

  31. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  CAS  PubMed  Google Scholar 

  32. Tran PB, Miller RJ (2003) Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci 4:444–455

    Article  CAS  PubMed  Google Scholar 

  33. Edman LC, Mira H, Erices A, Malmersjo S, Andersson E, Uhlen P, Arenas E (2008) Alpha-chemokines regulate proliferation, neurogenesis, and dopaminergic differentiation of ventral midbrain precursors and neurospheres. Stem Cells 26:1891–1900

    Article  CAS  PubMed  Google Scholar 

  34. Huang F, Lan Y, Qin L, Dong H, Shi H, Wu H, Zou Q, Hu Z, Wu X (2018) Astragaloside IV promotes adult neurogenesis in hippocampal dentate gyrus of mouse through CXCL1/CXCR34 signaling. Molecules 23(9):2178

    Article  CAS  PubMed Central  Google Scholar 

  35. Krtolica A, Larocque N, Genbacev O, Ilic D, Coppe JP, Patil CK, Zdravkovic T, McMaster M, Campisi J, Fisher SJ (2011) GROalpha regulates human embryonic stem cell self-renewal or adoption of a neuronal fate. Differentiation 81:222–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turbic A, Leong SY, Turnley AM (2011) Chemokines and inflammatory mediators interact to regulate adult murine neural precursor cell proliferation, survival and differentiation. PLoS ONE 6:e25406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hao DJ, Liu C, Zhang L, Chen B, Zhang Q, Zhang R, An J, Zhao J, Wu M, Wang Y, Simental A, He B, Yang H (2017) Lipopolysaccharide and curcumin co-stimulation potentiates olfactory ensheathing cell phagocytosis via enhancing their activation. Neurotherapeutics 14:502–518

    Article  CAS  PubMed  Google Scholar 

  38. Raman D, Milatovic SZ, Milatovic D, Splittgerber R, Fan GH, Richmond A (2011) Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1alpha, suppress amyloid beta-induced neurotoxicity. Toxicol Appl Pharmacol 256:300–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao DL, Qian B, Zhang ZJ, Gao YJ, Wu XB (2016) Chemokine receptor CXCR39 in dorsal root ganglion contributes to the maintenance of inflammatory pain. Brain Res Bull 127:219–225

    Article  CAS  PubMed  Google Scholar 

  40. Wang JG, Strong JA, Xie W, Yang RH, Coyle DE, Wick DM, Dorsey ED, Zhang JM (2008) The chemokine CXCL1/growth related oncogene increases sodium currents and neuronal excitability in small diameter sensory neurons. Mol Pain 4:38

    PubMed  PubMed Central  Google Scholar 

  41. Rodrigues DH, Leles BP, Costa VV, Miranda AS, Cisalpino D, Gomes DA, de Souza DG, Teixeira AL (2016) IL-1beta Is Involved with the generation of pain in experimental autoimmune encephalomyelitis. Mol Neurobiol 53:6540–6547

    Article  CAS  PubMed  Google Scholar 

  42. Dawes JM, Antunes-Martins A, Perkins JR, Paterson KJ, Sisignano M, Schmid R, Rust W, Hildebrandt T, Geisslinger G, Orengo C, Bennett DL, McMahon SB (2014) Genome-wide transcriptional profiling of skin and dorsal root ganglia after ultraviolet-B-induced inflammation. PLoS ONE 9:e93338

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morin N, Owolabi SA, Harty MW, Papa EF, Tracy TF Jr, Shaw SK, Kim M, Saab CY (2007) Neutrophils invade lumbar dorsal root ganglia after chronic constriction injury of the sciatic nerve. J Neuroimmunol 184:164–171

    Article  CAS  PubMed  Google Scholar 

  44. Woolf CJ, Ma Q (2007) Nociceptors–noxious stimulus detectors. Neuron 55:353–364

    Article  CAS  PubMed  Google Scholar 

  45. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, Hjerling-Leffler J, Haeggstrom J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145–153

    Article  CAS  PubMed  Google Scholar 

  46. Raman D, Neel NF, Sai J, Mernaugh RL, Ham AJ, Richmond AJ (2009) Characterization of chemokine receptor CXCR46 interacting proteins using a proteomics approach to define the CXCR46 "chemosynapse". Methods Enzymol 460:315–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goswami C (2010) Structural and functional regulation of growth cone, filopodia and synaptic sites by TRPV1. Commun Integr Biol 3:614–618

    Article  PubMed  PubMed Central  Google Scholar 

  48. Raisinghani M, Pabbidi RM, Premkumar LS (2005) Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J Physiol 567:771–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma QP (2001) Vanilloid receptor homologue, VRL1, is expressed by both A- and C-fiber sensory neurons. NeuroReport 12:3693–3695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Cornelia Dragomir, Geanina Haralambie and Andreea-Diana Lungu from University of Bucharest for technical support. This research was funded by the Romanian Government via UEFISCDI (Executive Unit for Higher Education, Research, Development and Innovation Funding) Grant 65/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Violeta Ristoiu.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deftu, A.T., Ciorescu, R., Gheorghe, RO. et al. CXCL1 and CXCL2 Inhibit the Axon Outgrowth in a Time- and Cell-Type-Dependent Manner in Adult Rat Dorsal Root Ganglia Neurons. Neurochem Res 44, 2215–2229 (2019). https://doi.org/10.1007/s11064-019-02861-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02861-x

Keywords

Navigation