Skip to main content

Advertisement

Log in

Uptake of Intact Copper Oxide Nanoparticles Causes Acute Toxicity in Cultured Glial Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles (CuO-NPs) dispersions are known for their high cell toxic potential but contaminating copper ions in such dispersions are a major hurdle in the investigation of specific nanoparticle-mediated toxicity. In order to distinguish between the adverse effects exhibited by CuO-NPs and/or by contaminating ionic copper, the membrane-impermeable copper chelator bathocuproine disulfonate (BCS) was added in a low molar ratio (20% of the total copper applied) in order to chelate the copper ions that had been released extracellularly from the CuO-NPs before or during the incubation. Physicochemical characterization of synthesized CuO-NPs revealed that the presence of this low concentration of BCS did not alter the size or zeta potential of the CuO-NPs. Application of CuO-NPs to C6 glioma cells and primary astrocytes induced a concentration- and temperature-dependent copper accumulation which was accompanied by a severe loss in cell viability. The adverse consequences of the CuO-NP application were not affected by the presence of 20% BCS, while the copper accumulation and cell toxicity observed after application of ionic copper were significantly lowered in the presence of BCS. These results demonstrate that for the experimental conditions applied the adverse consequences of an exposure of cultured glial cells to dispersions of CuO-NPs are mediated by accumulated NPs and not caused by the uptake of contaminating copper ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chauhan M, Sharma B, Kumar R, Chaudhary GR, Hassan AA, Kumar S (2019) Green synthesis of CuO nanomaterials and their proficient use for organic waste removal and antimicrobial application. Environ Res 168:85–95

    Article  CAS  PubMed  Google Scholar 

  2. Khatami M, Alijani HQ, Sharifi I (2018) Biosynthesis of bimetallic and core–shell nanoparticles: their biomedical applications–a review. IET Nanobiotechnol 12:879–887

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kadiyala U, Kotov NA, VanEpps JS (2018) Antibacterial metal oxide nanoparticles: challenges in interpreting the literature. Curr Pharm Des 24:896–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Titma T, Shimmo R, Siigur J, Kahru A (2016) Toxicity of antimony, copper, cobalt, manganese, titanium and zinc oxide nanoparticles for the alveolar and intestinal epithelial barrier cells in vitro. Cytotechnology 68:2363–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Líbalová H, Costa PM, Olsson M, Farcal L, Ortelli S, Blosi M, Topinka J, Costa AL, Fadeel B (2018) Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Chemosphere 196:482–493

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Zou Z, Wang B, Xu G, Wu Q, Zhang Y, Yuan Z, Yang X, Yu C (2018) Lysosomal deposition of copper oxide nanoparticles triggers HUVEC cells death. Biomaterials 161:228–239

    Article  CAS  PubMed  Google Scholar 

  7. Bulcke F, Thiel K, Dringen R (2014) Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology 8:775–785

    CAS  PubMed  Google Scholar 

  8. Kukia NR, Abbasi A, Froushani SMA (2018) Copper oxide nanoparticles stimulate cytotoxicity and apoptosis in glial cancer cell line. Dhaka Univ J Pharm Sci 17:105–111

    Article  Google Scholar 

  9. Vinardell M, Mitjans M (2018) Metal/metal oxide nanoparticles for cancer therapy. In: Goncalves G, Tobias G (eds) Nanooncology. Springer, Cham, pp 341–364

    Chapter  Google Scholar 

  10. Zhou Y, Peng Z, Seven ES, Leblanc RM (2018) Crossing the blood-brain barrier with nanoparticles. J Control Release 270:290–303

    Article  CAS  PubMed  Google Scholar 

  11. Khalid S, Afzal N, Khan JA, Hussain Z, Qureshi AS, Anwar H, Jamil Y (2018) Antioxidant resveratrol protects against copper oxide nanoparticle toxicity in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 391:1053–1062

    Article  CAS  Google Scholar 

  12. Li X, Sun W, An L (2018) Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats. Toxicol Ind Health 34:409–421

    Article  CAS  PubMed  Google Scholar 

  13. Lian D, Chonghua Z, Wen G, Hongwei Z, Xuetao B (2017) Label-free and dynamic monitoring of cytotoxicity to the blood–brain barrier cells treated with nanometre copper oxide. IET Nanobiotechnol 11:948–956

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahmoud A, Elif GE, Gül O (2016) Copper (II) Oxide nanoparticles induce high toxicity in human neuronal cell. Glob J Med Res 16:7–14

    Google Scholar 

  16. Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015) Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49:2749–2756

    Article  CAS  PubMed  Google Scholar 

  17. Midander K, Wallinder IO, Leygraf C (2007) In vitro studies of copper release from powder particles in synthetic biological media. Environ Pollut 145:51–59

    Article  CAS  PubMed  Google Scholar 

  18. Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano-and micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5:389–399

    Article  CAS  PubMed  Google Scholar 

  19. Semisch A, Ohle J, Witt B, Hartwig A (2014) Cytotoxicity and genotoxicity of nano-and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol 11:10–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong J, Kim S-H, Lee S, Lee D-K, Han Y, Jeon S, Cho W-S (2018) Differential contribution of constituent metal ions to the cytotoxic effects of fast-dissolving metal-oxide nanoparticles. Front Pharmacol 9:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang D, Lin Z, Wang T, Yao Z, Qin M, Zheng S, Lu W (2016) Where does the toxicity of metal oxide nanoparticles come from: the nanoparticles, the ions, or a combination of both? J Hazard Mater 308:328–334

    Article  CAS  PubMed  Google Scholar 

  22. Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R (2016) Uptake and toxicity of copper oxide nanoparticles in C6 glioma cells. Neurochem Res 41:3004–3019

    Article  CAS  PubMed  Google Scholar 

  23. Cho W-S, Duffin R, Poland CA, Duschl A, Oostingh GJ, MacNee W, Bradley M, Megson IL, Donaldson K (2012) Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6:22–35

    Article  CAS  PubMed  Google Scholar 

  24. Chen S-H, Lin J-K, Liu S-H, Liang Y-C, Lin-Shiau S-Y (2007) Apoptosis of cultured astrocytes induced by the copper and neocuproine complex through oxidative stress and JNK activation. Toxicol Sci 102:138–149

    Article  CAS  PubMed  Google Scholar 

  25. Kim BH, Yang J, Lee D, Choi BK, Hyeon T, Park J (2018) Liquid-phase transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv Mater 30:1703316

    Article  CAS  Google Scholar 

  26. Michen B, Geers C, Vanhecke D, Endes C, Rothen-Rutishauser B, Balog S, Petri-Fink A (2015) Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Sci Rep 5:9793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371

    Article  CAS  PubMed  Google Scholar 

  28. Stapelfeldt K, Ehrke E, Steinmeier J, Rastedt W, Dringen R (2017) Menadione-mediated WST1 reduction assay for the determination of metabolic activity of cultured neural cells. Anal Biochem 538:42–52

    Article  CAS  PubMed  Google Scholar 

  29. Tulpule K, Hohnholt MC, Hirrlinger J, Dringen R (2014) Primary cultures of astrocytes and neurons as model systems to study the metabolism and metabolite export from brain cells. In: Hirrlinger J, Waagepetersen H (eds) Neuromethods: brain energy metabolism. Springer, New York, pp 45–72

    Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  31. Chen L, Xue X, Jiang D, Yang J, Zhao B, Han XX, Mee Jung Y (2016) A turn-on resonance Raman scattering (BCS/Cu+) sensor for quantitative determination of proteins. Appl Spectrosc 70:355–362

    Article  CAS  PubMed  Google Scholar 

  32. Bulcke F, Santofimia-Castaño P, Gonzalez-Mateos A, Dringen R (2015) Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes. J Trace Elem Med Biol 32:168–176

    Article  CAS  PubMed  Google Scholar 

  33. Stark WJ (2011) Nanoparticles in biological systems. Angew Chem 50:1242–1258

    Article  CAS  Google Scholar 

  34. Chen D, Darabedian N, Li Z, Kai T, Jiang D, Zhou F (2016) An improved Bathocuproine assay for accurate valence identification and quantification of copper bound by biomolecules. Anal Biochem 497:27–35

    Article  CAS  PubMed  Google Scholar 

  35. Arratia F, Olivares-Ferretti P, García-Rodríguez A, Marcos R, Carmona ER (2019) Comparative toxic effects of copper-based nanoparticles and their microparticles in Daphnia magna by using natural freshwater media. New Zeal J Mar Fresh 53:460–469

    Article  CAS  Google Scholar 

  36. Henson TE, Navratilova J, Tennant AH, Bradham KD, Rogers KR, Hughes MF (2019) In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology 13:795–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jurašin DD, Ćurlin M, Capjak I, Crnković T, Lovrić M, Babič M, Horák D, Vrček IV, Gajović S (2016) Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein J Nanotechnol 7:246–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ortelli S, Costa AL, Blosi M, Brunelli A, Badetti E, Bonetto A, Hristozov D, Marcomini A (2017) Colloidal characterization of CuO nanoparticles in biological and environmental media. Environ Sci Nano 4:1264–1272

    Article  CAS  Google Scholar 

  39. Geppert M, Petters C, Thiel K, Dringen R (2013) The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes. J Nanopart Res 15:1349–1364

    Article  CAS  Google Scholar 

  40. Scheiber IF, Mercer JF, Dringen R (2010) Copper accumulation by cultured astrocytes. Neurochem Int 56:451–460

    Article  CAS  PubMed  Google Scholar 

  41. Tiffany-Castiglioni E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22:577–592

    Article  CAS  Google Scholar 

  42. Bulcke F, Dringen R (2016) Handling of copper and copper oxide nanoparticles by astrocytes. Neurochem Res 41:33–43

    Article  CAS  PubMed  Google Scholar 

  43. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M (2017) Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev 46:4218–4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Willmann W, Dringen R (2018) Monitoring of the cytoskeleton-dependent intracellular trafficking of fluorescent iron oxide nanoparticles by nanoparticle pulse-chase experiments in C6 glioma cells. Neurochem Res 43:2055–2071

    Article  CAS  PubMed  Google Scholar 

  45. Geppert M, Hohnholt MC, Thiel K, Nürnberger S, Grunwald I, Rezwan K, Dringen R (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101–145111

    Article  CAS  PubMed  Google Scholar 

  46. Masuoka J, Saltman P (1994) Zinc (II) and copper (II) binding to serum albumin. A comparative study of dog, bovine, and human albumin. J Biol Chem 269:25557–25561

    CAS  PubMed  Google Scholar 

  47. Peters T, Blumenstock FA (1967) Copper-binding properties of bovine serum albumin and its amino-terminal peptide fragment. J Biol Chem 242:1574–1578

    CAS  PubMed  Google Scholar 

  48. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  49. Akhtar MJ, Kumar S, Alhadlaq HA, Alrokayan SA, Abu-Salah KM, Ahamed M (2016) Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol Ind Health 32:809–821

    Article  CAS  PubMed  Google Scholar 

  50. Angelé-Martínez C, Nguyen KVT, Ameer FS, Anker JN, Brumaghim JL (2017) Reactive oxygen species generation by copper (II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 11:278–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang Y-W, Cambre M, Lee H-J (2017) The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci 18:2702–2715

    Article  CAS  PubMed Central  Google Scholar 

  52. Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  CAS  PubMed Central  Google Scholar 

  53. Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci 106:8344–8349

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saporito-Magriñá CM, Musacco-Sebio RN, Andrieux G, Kook L, Orrego MT, Tuttolomondo MV, Desimone MF, Boerries M, Borner C, Repetto MG (2018) Copper-induced cell death and the protective role of glutathione: the implication of impaired protein folding rather than oxidative stress. Metallomics 10:1743–1754

    Article  PubMed  Google Scholar 

  55. Noventa S, Hacker C, Rowe D, Elgy C, Galloway T (2018) Dissolution and bandgap paradigms for predicting the toxicity of metal oxide nanoparticles in the marine environment: an in vivo study with oyster embryos. Nanotoxicology 12:63–78

    Article  CAS  PubMed  Google Scholar 

  56. Djurišić AB, Leung YH, Ng AM, Xu XY, Lee PK, Degger N, Wu R (2015) Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small 11:26–44

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Arundhati Joshi would like to thank the Hans-Böckler Foundation for a PhD fellowship at the Graduate School NanoCompetence at the University of Bremen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Thiel, K., Jog, K. et al. Uptake of Intact Copper Oxide Nanoparticles Causes Acute Toxicity in Cultured Glial Cells. Neurochem Res 44, 2156–2169 (2019). https://doi.org/10.1007/s11064-019-02855-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02855-9

Keywords

Navigation