Skip to main content

Advertisement

Log in

The Binding Mechanisms and Inhibitory Effect of Intravenous Anesthetics on AChE In Vitro and In Vivo: Kinetic Analysis and Molecular Docking

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Inhibitors of acetylcholinesterase (AChE), which have an important role in the prevention of excessive AChE activity and β-amyloid (Aβ) formation are widely used in the symptomatic treatment of Alzheimer's disease (AD). The inhibitory effect of anesthetic agents on AChE was determined by several approaches, including binding mechanisms, molecular docking and kinetic analysis. Inhibitory effect of intravenous anesthetics on AChE as in vitro and in vivo have been discovered. The midazolam, propofol and thiopental have shown competitive inhibition type (midazolam > propofol > thiopental) and Ki values were found to be 3.96.0 ± 0.1, 5.75 ± 0.12 and 29.65 ± 2.04 µM, respectively. The thiopental and midazolam showed inhibition effect on AChE in vitro, whereas they showed activation effect in vivo when they are combined together. The order of binding of the drugs to the active site of the 4M0E receptor was found to be midazolam > propofol > thiopental. This study on anesthetic agents that are now widely used in surgical applications, have provided a molecular basis for investigating the drug-enzyme interactions mechanism. In addition, the study is important in understanding the molecular mechanism of inhibitors that are effective in the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Santamaria LB, Schifilliti D, La Torre D, Fodale V (2010) Drugs of anaesthesia and cancer. Surg Oncol. https://doi.org/10.1016/j.suronc.2009.03.007

    Article  PubMed  Google Scholar 

  2. Kvolik S, Glavas-Obrovac L, Bares V, Karner I (2005) Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci. https://doi.org/10.1016/j.lfs.2004.12.052

    Article  PubMed  Google Scholar 

  3. Mammoto T, Mukai M, Mammoto A et al (2002) Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett. https://doi.org/10.1016/S0304-3835(02)00210-0

    Article  PubMed  Google Scholar 

  4. Inal M, Alatas O, Kural T, Sevin B (1994) Oxygen free radicals in erythrocytes during open heart operation. J Cardiovasc Surg 35:147–150

    CAS  Google Scholar 

  5. Weiss M, Buhl R, Birkhahn A et al (1994) Do barbiturates and their solutions suppress FMLP-induced neutrophil chemiluminescence? Eur J Anaesthesiol 11:371–379

    CAS  PubMed  Google Scholar 

  6. Kelicen P, Ismailoglu UB, Erdemli O, Sahin-Erdemli I (1997) The effect of propofol and thiopentone on impairment by reactive oxygen species of endothelium-dependent relaxation in rat aortic rings. Eur J Anaesthesiol. https://doi.org/10.1097/00003643-199705000-00015

    Article  PubMed  Google Scholar 

  7. Vasileiou I, Xanthos T, Koudouna E et al (2009) Propofol: a review of its non-anaesthetic effects. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2009.01.007

    Article  PubMed  Google Scholar 

  8. Lee Y-M, Song BC, Yeum K-J (2015) Impact of volatile anesthetics on oxidative stress and inflammation. Biomed Res Int. https://doi.org/10.1155/2015/242709

    Article  PubMed  PubMed Central  Google Scholar 

  9. Calabrese V, Giordano J, Signorile A et al (2016) Major pathogenic mechanisms in vascular dementia: roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res. https://doi.org/10.1002/jnr.23925

    Article  PubMed  Google Scholar 

  10. Işık M, Beydemir Ş, Yılmaz A et al (2017) Oxidative stress and mRNA expression of acetylcholinesterase in the leukocytes of ischemic patients. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2017.01.003

    Article  PubMed  Google Scholar 

  11. Fang J, Wu P, Yang R et al (2014) Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharm Sin B. https://doi.org/10.1016/j.apsb.2014.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res. https://doi.org/10.1007/s12272-013-0036-3

    Article  PubMed  Google Scholar 

  13. Sabbagh MN (2009) Drug development for Alzheimer’s disease: where are we now and where are we headed? Am J Geriatr Pharmacother. https://doi.org/10.1016/j.amjopharm.2009.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  14. Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov. https://doi.org/10.1038/nrd2896

    Article  PubMed  Google Scholar 

  15. Chaudière J, Ferrari-Iliou R (1999) Intracellular antioxidants: From chemical to biochemical mechanisms. Food Chem Toxicol. https://doi.org/10.1016/S0278-6915(99)00090-3

    Article  PubMed  Google Scholar 

  16. Göcer H, Akincioʇlu A, Göksu S et al (2015) Carbonic anhydrase and acetylcholinesterase inhibitory effects of carbamates and sulfamoylcarbamates. J Enzyme Inhib Med Chem. https://doi.org/10.3109/14756366.2014.928704

    Article  PubMed  Google Scholar 

  17. Alici HA, Ekinci D, Beydemir Ş (2008) Intravenous anesthetics inhibit human paraoxonase-1 (PON1) activity in vitro and in vivo. Clin Biochem. https://doi.org/10.1016/j.clinbiochem.2008.06.017

    Article  PubMed  Google Scholar 

  18. Ellman GL, Courtney DK, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  19. Taslimi P, Kandemir FM, Demir Y et al (2019) The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: pharmacological evaluation of some metabolic enzyme activities. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22313

    Article  PubMed  Google Scholar 

  20. Wright DL, Plummer DT (2015) Multiple forms of acetylcholinesterase from human erythrocytes. Biochem J. https://doi.org/10.1042/bj1330521

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yamali C, Gul HI, Ece A et al (2018) Synthesis, molecular modeling, and biological evaluation of 4-[5-aryl-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes. Chem Biol Drug Des. https://doi.org/10.1111/cbdd.13149

    Article  PubMed  Google Scholar 

  22. Demir Y, Işık M, Gülçin İ, Beydemir Ş (2017) Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.21935

    Article  PubMed  Google Scholar 

  23. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. https://doi.org/10.1021/jm030644s

    Article  PubMed  Google Scholar 

  24. Türkeş C (2019) Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs. Protein Pept Lett. https://doi.org/10.2174/0929866526666190226162225

    Article  PubMed  Google Scholar 

  25. Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-013-9644-8

    Article  PubMed  Google Scholar 

  26. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. https://doi.org/10.1021/jm0306430

    Article  PubMed  Google Scholar 

  27. Harder E, Damm W, Maple J et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.5b00864

    Article  PubMed  Google Scholar 

  28. Ansley DM, Lee JU, Godin DV et al (1998) Propofol enhances red cell antioxidant capacity in swine and humans. Can J Anaesth. https://doi.org/10.1007/BF03012908

    Article  PubMed  Google Scholar 

  29. Hans P, Deby-Dupont G, Deby C et al (1997) Increase in antioxidant capacity of plasma during propofol anesthesia. J Neurosurg Anesthesiol. https://doi.org/10.1097/00008506-199707000-00006

    Article  PubMed  Google Scholar 

  30. Manataki AD, Tselepis AD, Glantzounis GK et al (2001) Lipid peroxidation and the use of emulsified propofol in laparoscopic surgery. Surg Endosc. https://doi.org/10.1007/s004640090104

    Article  PubMed  Google Scholar 

  31. Stratford N, Murphy P (1998) Antioxidant activity of propofol in blood from anaesthetized patients. Eur J Anaesthesiol. https://doi.org/10.1097/00003643-199803000-00006

    Article  PubMed  Google Scholar 

  32. Yagmurdur H, Cakan T, Bayrak AK et al (2004) The effects of etomidate, thiopental, and propofol in induction on hypoperfusion-reperfusion phenomenon during laparoscopic cholecystectomy. Acta Anaesthesiol Scand. https://doi.org/10.1111/j.0001-5172.2004.00417.x

    Article  PubMed  Google Scholar 

  33. Harman F, Hasturk AE, Yaman M et al (2012) Neuroprotective effects of propofol, thiopental, etomidate, and midazolam in fetal rat brain in ischemia-reperfusion model. Child’s Nerv Syst. https://doi.org/10.1007/s00381-012-1782-0

    Article  Google Scholar 

  34. Calabrese V, Giordano J, Crupi R et al (2017) Hormesis, cellular stress response and neuroinflammation in schizophrenia: early onset versus late onset state. J Neurosci Res. https://doi.org/10.1002/jnr.23967

    Article  PubMed  Google Scholar 

  35. Runzer TD, Ansley DM, Godin DV, Chambers GK (2002) Tissue antioxidant capacity during anesthesia: propofol enhances in vivo red cell and tissue antioxidant capacity in a rat model. Anesth Analg. https://doi.org/10.1213/00000539-200201000-00017

    Article  PubMed  Google Scholar 

  36. Calabrese EJ (2019) The linear No-Threshold (LNT) dose response model: a comprehensive assessment of its historical and scientific foundations. Chem Biol Interact. https://doi.org/10.1016/j.cbi.2018.11.020

    Article  PubMed  Google Scholar 

  37. Nishina K, Akamatsu H, Mikawa K et al (1998) The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions. Anesth Analg. https://doi.org/10.1097/00000539-199801000-00032

    Article  PubMed  Google Scholar 

  38. Xue Q-S, Yu B-W, Wang Z-J, Chen H-Z (2004) Effects of ketamine, midazolam, thiopental, and propofol on brain ischemia injury in rat cerebral cortical slices. Acta Pharmacol Sin 25:115–120

    CAS  PubMed  Google Scholar 

  39. Sánchez-Conde P, Rodríguez-López JM, Nicolás JL et al (2008) The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesth Analg. https://doi.org/10.1213/ane.0b013e318160580b

    Article  PubMed  Google Scholar 

  40. Chillemi R, Cardullo N, Greco V et al (2015) Synthesis of amphiphilic resveratrol lipoconjugates and evaluation of their anticancer activity towards neuroblastoma SH-SY5Y cell line. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2015.04.038

    Article  PubMed  Google Scholar 

  41. Trovato Salinaro A, Pennisi M, Di Paola R et al (2018) Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun Ageing. https://doi.org/10.1186/s12979-017-0108-1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pastuszko A (1980) Action of barbiturates on activity of acetylcholinesterase from synaptosomal membranes. Neurochem Res. https://doi.org/10.1007/BF00964714

    Article  PubMed  Google Scholar 

  43. Kakinuma Y, Furihata M, Akiyama T et al (2010) Donepezil, an acetylcholinesterase inhibitor against Alzheimer’s dementia, promotes angiogenesis in an ischemic hindlimb model. J Mol Cell Cardiol. https://doi.org/10.1016/j.yjmcc.2009.11.010

    Article  PubMed  Google Scholar 

  44. Bartolini M, Bertucci C, Cavrini V, Andrisano V (2003) β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol. https://doi.org/10.1016/S0006-2952(02)01514-9

    Article  PubMed  Google Scholar 

  45. García-Ayllón M-S (2011) Revisiting the role of acetylcholinesterase in Alzheimer’s disease: cross-talk with P-tau and β-amyloid. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2011.00022

    Article  PubMed  PubMed Central  Google Scholar 

  46. Von Bernhardi R, Alarcón R, Mezzano D et al (2005) Blood cells cholinesterase activity in early stage Alzheimer’s disease and vascular dementia. Dement Geriatr Cogn Disord. https://doi.org/10.1159/000083500

    Article  Google Scholar 

  47. Blennow K (2010) Biomarkers in Alzheimer’s disease drug development. Nat Med. https://doi.org/10.1038/nm.2221

    Article  PubMed  Google Scholar 

  48. Sánchez JM, Demartini AF, Roca ADTL (2003) Interaction of donepezil and muscular blockers in Alzheimer’s disease. Rev Esp Anestesiol Reanim 50:97–100

    Google Scholar 

  49. Curatola G, Mazzanti L, Lenaz G, Pastuszko A (1979) General anesthetics inhibit erythrocyte acetylcholinesterase only when membrane-bound. Bull Mol Biol Med 4:139–146

    CAS  Google Scholar 

  50. Spinedi A, Pacini L, Luly P (2015) A study of the mechanism by which some amphiphilic drugs affect human erythrocyte acetylcholinesterase activity. Biochem J. https://doi.org/10.1042/bj2610569

    Article  Google Scholar 

  51. Cohen ML, Chan SL, Bhargava HN, Trevor AJ (1974) Inhibition of mammalian brain acetylcholinesterase by ketamine. Biochem Pharmacol. https://doi.org/10.1016/0006-2952(74)90377-3

    Article  PubMed  Google Scholar 

  52. Braswell LM, Kitz RJ (1977) The effect in vitro of volatile anesthetics on the activity of cholinesterases. J Neurochem. https://doi.org/10.1111/j.1471-4159.1977.tb07784.x

    Article  PubMed  Google Scholar 

  53. Tassonyi E, Charpantier E, Muller D et al (2002) The role of nicotinic acetylcholine receptors in the mechanisms of anesthesia. Brain Res Bull. https://doi.org/10.1016/S0361-9230(01)00740-7

    Article  PubMed  Google Scholar 

  54. Hertle I, Scheller M, Bufler J et al (1997) Interaction of midazolam with the nicotinic acetylcholine receptor of mouse myotubes. Anesth Analg. https://doi.org/10.1097/00000539-199707000-00031

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial which provided by the Research Foundation of Atatürk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Işık.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Işık, M. The Binding Mechanisms and Inhibitory Effect of Intravenous Anesthetics on AChE In Vitro and In Vivo: Kinetic Analysis and Molecular Docking. Neurochem Res 44, 2147–2155 (2019). https://doi.org/10.1007/s11064-019-02852-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02852-y

Keywords

Navigation