Skip to main content

Advertisement

Log in

The Dual Role of HIV-1 gp120 V3 Loop-Induced Autophagy in the Survival and Apoptosis of the Primary Rat Hippocampal Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

HIV-1 gp120, an important subunit of the envelope spikes that decorate the surface of virions, is known to play a vital role in neuronal injury during HIV-1-associated neurocognitive disorder (HAND), although the pathological mechanism is not fully understood. Our previous studies have suggested that the V3 loop of HIV-1 gp120 (HIV-1 gp120 V3 loop) can induce neuronal apoptosis in the hippocampus, resulting in impairment in spatial learning and memory in Sprague–Dawley (SD) rats. In this study, we demonstrated that autophagy was significantly increased in rat primary hippocampal neurons in response to treatment of HIV-1 gp120 V3 loop. Importantly, HIV-1 gp120 V3 loop-induced autophagy played a dual role in the cell survival and death. An increase in autophagy for a short period inhibited apoptosis of neurons, while persistent autophagy over an extended period of time played a detrimental role by augmenting the apoptotic cascade in rat primary hippocampal neurons. In addition, we found that the HIV-1 gp120 V3 loop induced autophagy via AMPK/mTOR-dependent and calpain/mTOR-independent pathways, and the ERK/mTOR pathway plays a partial role. These findings provide evidence that HIV-1-induced autophagy plays a dual role in the survival and apoptosis of the primary rat hippocampal neurons and persistent autophagy may contribute to the pathogenesis of HAND, and autophagy modulation may represent a potential therapeutic strategy for reducing neuronal damage in HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

HIV-1:

Human immunodeficiency virus type 1

HAND:

HIV-1- associated neurocognitive disorders

GAPDH:

Glyceraldehyde-3-phosphatedehydrogenase

mTOR:

Mechanistic target of rapamycin

mTORC1:

mTOR complex 1

MAP1LC3 (LC3):

Microtubule-associated protein 1 light chain 3

ATG:

Autophagy-related gene

SQSTM1 (p62):

Sequestosome 1 (a ubiquitin-binding scaffold protein)

MAPK1 (ERK2):

Mitogen-activated protein kinase 1

MAPK3 (ERK1):

Mitogen-activated protein kinase 3

LC3B-I:

Unlipidated form of LC3B

LC3B-II:

Phosphatidylethanolamine-conjugated form of LC3B

Cas-3:

Caspase 3

3-MA:

3-Methyladenine

AMPK:

AMP activated protein kinase

MDC:

Monodansylcadaverine

NMDA:

N-Methyl-d-Aspartate

TNF-α:

Tumor necrosis factor-α

References

  1. Harding KE, Robertson NP (2015) HIV-associated neurocognitive disorders. J Neurol 262(6):1596–1598. https://doi.org/10.1007/s00415-015-7783-7

    Article  PubMed  Google Scholar 

  2. Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367(6459):188–193. https://doi.org/10.1038/367188a0

    Article  CAS  PubMed  Google Scholar 

  3. Tang H, Pan R, Fang W, Xing Y, Chen D, Chen X, Yu Y, Wang J, Gong Z, Xiong G, Dong J (2013) Curcumin ameliorates hippocampal neuron damage induced by human immunodeficiency virus-1. Neural Regen Res 8(15):1368–1375. https://doi.org/10.3969/j.issn.1673-5374.2013.15.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang H, Lu D, Pan R, Qin X, Xiong H, Dong J (2009) Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sci 85(1–2):1–10. https://doi.org/10.1016/j.lfs.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  5. Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G (2000) gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 74(6):2373–2379

    Article  CAS  PubMed  Google Scholar 

  6. Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24(3):275–283. https://doi.org/10.1097/WCO.0b013e32834695fb

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee C, Tomkowicz B, Freedman BD, Collman RG (2005) HIV-1 gp120-induced TNF-{alpha} production by primary human macrophages is mediated by phosphatidylinositol-3 (PI-3) kinase and mitogen-activated protein (MAP) kinase pathways. J Leukoc Biol 78(4):1016–1023. https://doi.org/10.1189/jlb.0105056

    Article  CAS  PubMed  Google Scholar 

  8. Zolla-Pazner S (2005) Improving on nature: focusing the immune response on the V3 loop. Hum Antibodies 14(3–4):69–72

    PubMed  Google Scholar 

  9. Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29(9):528–535. https://doi.org/10.1016/j.tins.2006.07.003

    Article  CAS  PubMed  Google Scholar 

  10. Alirezaei M, Kiosses WB, Flynn CT, Brady NR, Fox HS (2008) Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS ONE 3(8):e2906. https://doi.org/10.1371/journal.pone.0002906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou D, Masliah E, Spector SA (2011) Autophagy is increased in postmortem brains of persons with HIV-1-associated encephalitis. J Infect Dis 203(11):1647–1657. https://doi.org/10.1093/infdis/jir163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793(4):664–673. https://doi.org/10.1016/j.bbamcr.2008.07.014

    Article  CAS  PubMed  Google Scholar 

  13. Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL, Schneider C (2006) Calpain is required for macroautophagy in mammalian cells. J Cell Biol 175(4):595–605. https://doi.org/10.1083/jcb.200601024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90(4):1383–1435. https://doi.org/10.1152/physrev.00030.2009

    Article  CAS  PubMed  Google Scholar 

  15. Rychert J, Strick D, Bazner S, Robinson J, Rosenberg E (2010) Detection of HIV gp120 in plasma during early HIV infection is associated with increased proinflammatory and immunoregulatory cytokines. AIDS Res Hum Retroviruses 26(10):1139–1145. https://doi.org/10.1089/aid.2009.0290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo L, Xing Y, Pan R, Jiang M, Gong Z, Lin L, Wang J, Xiong G, Dong J (2013) Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis. PLoS ONE 8(8):e70565. https://doi.org/10.1371/journal.pone.0070565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biederbick A, Kern HF, Elsasser HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66(1):3–14

    CAS  PubMed  Google Scholar 

  18. Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kadowaki M (2007) Cytosolic LC3 ratio as a sensitive index of macroautophagy in isolated rat hepatocytes and H4-II-E cells. Autophagy 3(6):553–560

    Article  CAS  PubMed  Google Scholar 

  19. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36(12):2445–2462. https://doi.org/10.1016/j.biocel.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  21. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998

    Article  CAS  PubMed  Google Scholar 

  22. Eldadah BA, Faden AI (2000) Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 17(10):811–829. https://doi.org/10.1089/neu.2000.17.811

    Article  CAS  PubMed  Google Scholar 

  23. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688. https://doi.org/10.1172/JCI26390

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8(10):1124–1132. https://doi.org/10.1038/ncb1482

    Article  CAS  PubMed  Google Scholar 

  25. Hsieh MJ, Tsai TL, Hsieh YS, Wang CJ, Chiou HL (2013) Dioscin-induced autophagy mitigates cell apoptosis through modulation of PI3K/Akt and ERK and JNK signaling pathways in human lung cancer cell lines. Arch Toxicol 87(11):1927–1937. https://doi.org/10.1007/s00204-013-1047-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kajta M, Rzemieniec J, Litwa E, Lason W, Lenartowicz M, Krzeptowski W, Wojtowicz AK (2013) The key involvement of estrogen receptor beta and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 238:345–360. https://doi.org/10.1016/j.neuroscience.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  27. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD (2005) Structure of a V3-containing HIV-1 gp120 core. Science 310(5750):1025–1028. https://doi.org/10.1126/science.1118398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hesselgesser J, Halks-Miller M, DelVecchio V, Peiper SC, Hoxie J, Kolson DL, Taub D, Horuk R (1997) CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr Biol 7(2):112–121

    Article  CAS  PubMed  Google Scholar 

  29. Lazarini F, Casanova P, Tham TN, De Clercq E, Arenzana-Seisdedos F, Baleux F, Dubois-Dalcq M (2000) Differential signalling of the chemokine receptor CXCR4 by stromal cell-derived factor 1 and the HIV glycoprotein in rat neurons and astrocytes. Eur J Neurosci 12(1):117–125

    Article  CAS  PubMed  Google Scholar 

  30. Garden GA, Guo W, Jayadev S, Tun C, Balcaitis S, Choi J, Montine TJ, Moller T, Morrison RS (2004) HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J 18(10):1141–1143. https://doi.org/10.1096/fj.04-1676fje

    Article  CAS  PubMed  Google Scholar 

  31. Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460. https://doi.org/10.1016/j.cell.2008.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968. https://doi.org/10.1016/j.cell.2006.06.055

    Article  CAS  PubMed  Google Scholar 

  33. Abe K, Takeichi M (2007) NMDA-receptor activation induces calpain-mediated beta-catenin cleavages for triggering gene expression. Neuron 53(3):387–397. https://doi.org/10.1016/j.neuron.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  34. Menzies FM, Garcia-Arencibia M, Imarisio S, O’Sullivan NC, Ricketts T, Kent BA, Rao MV, Lam W, Green-Thompson ZW, Nixon RA, Saksida LM, Bussey TJ, O’Kane CJ, Rubinsztein DC (2015) Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity. Cell Death Differ 22(3):433–444. https://doi.org/10.1038/cdd.2014.151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (81171134 and 81471235), Guangdong Provincial Natural Science Foundation of China (2014A030313360), the Program of Introducing Talents of Discipline to Universities (B14036), the Science and Technology Foundation of Guangdong (2010B030700016), and the cultivation and innovation fund of Jinan University (No. 21617460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Dong.

Ethics declarations

Conflict of Interest

There are no conflicts of interest associated with the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xing, Y., Wang, J. et al. The Dual Role of HIV-1 gp120 V3 Loop-Induced Autophagy in the Survival and Apoptosis of the Primary Rat Hippocampal Neurons. Neurochem Res 44, 1636–1652 (2019). https://doi.org/10.1007/s11064-019-02788-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02788-3

Keywords

Navigation