Skip to main content

Advertisement

Log in

Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Traumatic brain injury triggers neuroinflammation that may contribute to progressive neurodegeneration. We investigated patterns of recruitment of astrocytes and microglia to inflammation after brain trauma by firstly characterising expression profiles over time of marker genes following TBI, and secondly by monitoring glial morphologies reflecting inflammatory responses in a rat model of traumatic brain injury (i.e. the lateral fluid percussion injury). Gene expression profiles revealed early elevation of expression of astrocytic marker glial fibrillary acidic protein relative to microglial marker allograft inflammatory factor 1 (also known as ionized calcium-binding adapter molecule 1). Adult rat brains collected at day 7 after injury were processed for immunohistochemistry with allograft inflammatory factor 1, glial fibrillary acidic protein and complement C3 (marker of bad/disruptive astrocytic A1 phenotype). Astrocytes positive for glial fibrillary acidic protein and complement C3 were significant increased in the injured cortex and displayed more complex patterns of arbourisation with significantly increased bifurcations. Our observations suggested that traumatic brain injury changed the phenotype of microglia from a ramified appearance with long, thin, highly branched processes to a swollen amoeboid shape in the injured cortex. These findings suggest differential glial activation with astrocytes likely undergoing strategic changes in morphology and function. Whilst a detailed analysis is needed of temporal patterns of glial activation, ours is the first evidence of a role for the bad/disruptive astrocytic A1 phenotype in an open head model of traumatic brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A1:

Neurotoxic phenotype of reactive astrocytes

A2:

Neuroprotective phenotype of reactive astrocytes

Aif1:

Allograft inflammatory factor 1

AuD:

Auditory cortex

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

C3:

Complement component 3

C3+:

Complement component 3 immunoreactive positive

CCI:

Controlled cortical impact injury

CNS:

Central nervous system

CSPG:

Chondroitin sulphate proteoglycan

C1q:

Complement component 1q

CD68:

Cluster of differentiation 68

CSF-1:

Colony stimulating factor 1

DAMPs:

Damage-associated molecular patterns

DAM:

Disease-associated microglia

DAPI:

4′-6-diamidino-2-phenylindole

FPI:

Lateral fluid percussion injury

GFAP:

Glial fibrillary acidic protein

GFAP+:

Glial fibrillary acidic protein immunoreactive positive

HCl:

Hydrochloric acid

Iba1:

Ionized calcium-binding adapter molecule 1

IL:

Interleukin

M1:

Neurotoxic phenotype of reactive microglia

M2:

Neuroprotective phenotype of reactive microglia

NDS:

Normal donkey serum

PBS:

Phosphate buffered saline

S2:

Region somatosensory cortex

Sham:

Sham-injury

TBI:

Traumatic brain injury

TGF-β:

Transforming growth factor beta 1

TNF:

Tumor necrosis factor

References

  1. Johnson VE, Stewart W, Arena JD, Smith DH (2017) Traumatic brain injury as a trigger of neurodegeneration. Adv Neurobiol 15:383–400

    Article  PubMed  Google Scholar 

  2. Loane DJ, Stoica BA, Faden AI (2015) Neuroprotection for traumatic brain injury. Handb Clin Neurol 127:343–366

    Article  PubMed  PubMed Central  Google Scholar 

  3. Faden AI, Wu J, Stoica BA, Loane DJ (2016) Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury. Br J Pharmacol 173:681–691

    Article  CAS  PubMed  Google Scholar 

  4. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173:692–702

    Article  CAS  PubMed  Google Scholar 

  5. Fehily B, Fitzgerald M (2017) Repeated mild traumatic brain injury: potential mechanisms of damage. Cell Transplant 26:1131–1155

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sun M, McDonald SJ, Brady RD, O’Brien TJ, Shultz SR (2018) The influence of immunological stressors on traumatic brain injury. Brain Behav Immun 69:618–628

    Article  CAS  PubMed  Google Scholar 

  7. Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7:22–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kelso ML, Gendelman HE (2014) Bridge between neuroimmunity and traumatic brain injury. Curr Pharm Des 20:4284–4298

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Corps KN, Roth TL, McGavern DB (2015) Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol 72:355–362

    Article  PubMed  PubMed Central  Google Scholar 

  10. Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7:66–77

    Article  CAS  Google Scholar 

  11. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  12. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  CAS  PubMed  Google Scholar 

  13. Verkhratsky A, Zorec R, Rodriguez JJ, Parpura V (2017) Neuroglia: functional paralysis and reactivity in Alzheimer’s disease and other neurodegenerative pathologies. Adv Neurobiol 15:427–449

    Article  PubMed  Google Scholar 

  14. Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, Brown A (2012) A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma 29:2375–2392

    Article  PubMed  Google Scholar 

  15. Webster KM, Wright DK, Sun M, Semple BD, Ozturk E, Stein DG, O’Brien TJ, Shultz SR (2015) Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflamm 12:238

    Article  CAS  Google Scholar 

  16. Shultz SR, Sun M, Wright DK, Brady RD, Liu S, Beynon S, Schmidt SF, Kaye AH, Hamilton JA, O’Brien TJ, Grills BL, McDonald SJ (2015) Tibial fracture exacerbates traumatic brain injury outcomes and neuroinflammation in a novel mouse model of multitrauma. J Cereb Blood Flow Metab 35:1339–1347

    Article  PubMed  PubMed Central  Google Scholar 

  17. Webster KM, Sun M, Crack P, O’Brien TJ, Shultz SR, Semple BD (2017) Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflamm 14:10

    Article  CAS  Google Scholar 

  18. Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM (2007) Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 27:2176–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  20. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sewell DL, Nacewicz B, Liu F, Macvilay S, Erdei A, Lambris JD, Sandor M, Fabry Z (2004) Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J Neuroimmunol 155:55–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loane DJ, Kumar A (2016) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275:316–327

    Article  CAS  PubMed  Google Scholar 

  24. Kumar A, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ (2016) Microglial/macrophage polarization dynamics following traumatic brain injury. J Neurotrauma 33:1732–1750

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  26. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  27. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burda JE, Sofroniew MV (2017) Seducing astrocytes to the dark side. Cell Res 27:726–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI (2003) Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma 20:907–927

    Article  PubMed  Google Scholar 

  30. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed  Google Scholar 

  31. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  32. RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston

    Google Scholar 

  33. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  34. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shultz SR, Cardamone L, Liu YR, Hogan RE, Maccotta L, Wright DK, Zheng P, Koe A, Gregoire MC, Williams JP, Hicks RJ, Jones NC, Myers DE, O’Brien TJ, Bouilleret V (2013) Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia 54:1240–1250

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnstone VP, Wright DK, Wong KK, O’Brien TJ, Rajan R, Shultz S (2015) Experimental traumatic brain injury results in long-term recovery of functional responsiveness in sensory cortex but persisting structural changes and sensorimotor, cognitive, and emotional deficits. J Neurotrauma 32:1333–1346

    Article  PubMed  Google Scholar 

  38. Wright DK, Liu S, van der Poel C, McDonald SJ, Brady RD, Taylor L, Yang L, Gardner AJ, Ordidge R, O’Brien TJ, Johnston LA, Shultz SR (2017) Traumatic brain injury results in cellular, structural and functional changes resembling motor neuron disease. Cereb Cortex 27:4503–4515

    PubMed  Google Scholar 

  39. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  40. Ziebell JM, Taylor SE, Cao T, Harrison JL, Lifshitz J (2012) Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflamm 9:247

    Article  Google Scholar 

  41. Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    Article  CAS  PubMed  Google Scholar 

  42. Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130:813–831

    Article  CAS  PubMed  Google Scholar 

  43. Lau CL, Perreau VM, Chen MJ, Cate HS, Merlo D, Cheung NS, O’Shea RD, Beart PM (2012) Transcriptomic profiling of astrocytes treated with the Rho kinase inhibitor fasudil reveals cytoskeletal and pro-survival responses. J Cell Physiol 227:1199–1211

    Article  CAS  PubMed  Google Scholar 

  44. Namihira M, Nakashima K (2013) Mechanisms of astrocytogenesis in the mammalian brain. Curr Opin Neurobiol 23:921–927

    Article  CAS  PubMed  Google Scholar 

  45. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lenz KM, Nelson LH (2018) Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front Immunol 9:698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sarlus H, Heneka MT (2017) Microglia in Alzheimer’s disease. J Clin Investig 127:3240–3249

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991

    Article  CAS  PubMed  Google Scholar 

  50. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290

    Article  CAS  PubMed  Google Scholar 

  51. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081

    Article  CAS  PubMed  Google Scholar 

  53. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers KM, McColl BW (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95:1246–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383

    Article  PubMed  Google Scholar 

  56. Fourgeaud L, Través PG, Tufail Y, Leal-Bailey H, Lew ED, Burrola PG, Callaway P, Zagórska A, Rothlin CV, Nimmerjahn A, Lemke G (2016) TAM receptors regulate multiple features of microglial physiology. Nature 532:240–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB (2014) Transcranial amelioration of inflammation and cell death after brain injury. Nature 505:223–228

    Article  CAS  PubMed  Google Scholar 

  58. Shitaka Y, Tran HT, Bennett RE, Sanchez L, Levy MA, Dikranian K, Brody DL (2011) Repetitive closed-skull traumatic brain injury in mice causes persistent multifocal axonal injury and microglial reactivity. J Neuropathol Exp Neurol 70:551–567

    Article  PubMed  Google Scholar 

  59. Mannix R, Meehan WP, Mandeville J, Grant PE, Gray T, Berglass J, Zhang J, Bryant J, Rezaie S, Chung JY, Peters NV, Lee C, Tien LW, Kaplan DL, Feany M, Whalen M (2013) Clinical correlates in an experimental model of repetitive mild brain injury. Ann Neurol 74:65–75

    Article  PubMed  PubMed Central  Google Scholar 

  60. Huber BR, Meabon JS, Hoffer ZS, Zhang J, Hoekstra JG, Pagulayan KF, McMillan PJ, Mayer CL, Banks WA, Kraemer BC, Raskind MA, McGavern DB, Peskind ER, Cook DG (2016) Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction. Neuroscience 319:206–220

    Article  CAS  PubMed  Google Scholar 

  61. Meng Q, Zhuang Y, Ying Z, Agrawal R, Yang X, Gomez-Pinilla F (2017) Traumatic brain injury induces genome-wide transcriptomic, methylomic, and network perturbations in brain and blood predicting neurological disorders. EBioMedicine 16:184–194

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY (2016) Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 272:49

    Article  Google Scholar 

  63. Donat CK, Scott G, Gentleman SM, Sastre M (2017) Microglial activation in traumatic brain injury. Front Aging Neurosci 9:208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bouvier DS, Murai KK (2015) Synergistic actions of microglia and astrocytes in the progression of Alzheimer’s disease. J Alzheimers Dis 45:1001–1014

    Article  PubMed  Google Scholar 

  65. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  66. Kim JV, Dustin ML (2006) Innate response to focal necrotic injury inside the blood-brain barrier. J Immunol 177:5269–5277

    Article  CAS  PubMed  Google Scholar 

  67. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S, Sofroniew MV (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ (2018) The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep 22:269–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci USA 115:E1896–E1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao X, Lee JH, Kumar M, An D, Kang SU, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke VV, Liddelow SA, Mari Z, Barres BA, Dawson VL, Lee S, Dawson TM, Ko HS (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24:931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  73. Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    Article  CAS  PubMed  Google Scholar 

  75. Martinez-Lozada Z, Guillem AM, Robinson MB (2016) Transcriptional regulation of glutamate transporters: from extracellular signals to transcription factors. Adv Pharmacol 76:103–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298

    Article  PubMed  Google Scholar 

  77. Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 16:255–257

    Article  CAS  PubMed  Google Scholar 

  78. Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol 166:6383–6391

    Article  CAS  PubMed  Google Scholar 

  79. Norden DM, Fenn AM, Dugan A, Godbout JP (2014) TGFß produced by IL-10 redirected astrocytes attenuates microglial activation. Glia 62:881–895

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Ståhlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468–481

    Article  CAS  PubMed  Google Scholar 

  81. Abeysinghe HC, Phillips EL, Chin-Cheng H, Beart PM, Roulston CL (2016) Modulating astrocyte transition after stroke to promote brain rescue and functional recovery: emerging targets include rho kinase. Int J Mol Sci 17:288–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

PMB is pleased to contribute a paper to this Special Issue honouring Tony Turner who has been a colleague furthering the neurochemical cause via the Journal of Neurochemistry and internationally (ISN) and in Europe (ESN) for some 20 years. This work is partly funded by the J and M Nolan Family Trust. This work was supported by the Victorian Government through the Operational Infrastructure Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip M. Beart.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue in honor of Prof. Anthony J. Turner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, D.P.Q., Perreau, V.M., Shultz, S.R. et al. Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochem Res 44, 1410–1424 (2019). https://doi.org/10.1007/s11064-019-02721-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02721-8

Keywords

Navigation