Skip to main content

Advertisement

Log in

The Barnes Maze Task Reveals Specific Impairment of Spatial Learning Strategy in the Intrahippocampal Kainic Acid Model for Temporal Lobe Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy (TLE) is an acquired form of focal epilepsy, in which patients not only suffer from unprovoked, devastating seizures, but also from severe comorbidities, such as cognitive dysfunction. Correspondingly, several animal models of TLE exhibit memory dysfunction, especially spatial memory. The Morris water maze test is the most commonly used test for assessing spatial learning and memory in rodents. However, high stress and poor swimming abilities are common confounders and may contribute to misinterpretation. Particularly epileptic mice show altered behaviour during the test as they fail to understand the paradigm context. In the Barnes maze test, a dry-land maze test for spatial learning and memory that uses milder aversive stimuli, these drawbacks have not yet been reported. In the present study, we use this task to evaluate spatial learning and memory in the intrahippocampal kainic acid mouse model of TLE. We demonstrate that the epileptic mice understand the Barnes maze paradigm context, as they learn the location of the escape-chamber by using a serial search strategy but fail to develop the more efficient spatial search strategy. Our data indicate that the Barnes maze may be a better alternative to the Morris water maze for assessing search strategies and impairment of learning and memory in epileptic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Panayiotopoulos CP (2006) Temporal lobe epilepsy (TLE). Medicinae. https://www.epilepsy.com/learn/professionals/about-epilepsy-seizures/symptomatic-and-probably-symptomatic-focal-epilepsies-0. Accessed 11 April 2018

  2. Helmstaedter C, Elger CE (2009) Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease? Brain. https://doi.org/10.1093/brain/awp182

    Article  PubMed  Google Scholar 

  3. Miltiadous P, Stamatakis A, Koutsoudaki PN, Tiniakos DG, Stylianopoulou F (2011) IGF-I ameliorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Exp Neurol 231(2):223–235. https://doi.org/10.1016/j.expneurol.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  4. Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B (2016) Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res 8(10):4499–4509

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shapiro LA, Wang L, Ribak CE (2008) Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia. https://doi.org/10.1111/j.1528-1167.2008.01491.x

    Article  PubMed  Google Scholar 

  6. Gröticke I, Hoffmann K, Löscher W (2008) Behavioral alterations in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Exp Neurol. https://doi.org/10.1016/j.expneurol.2008.04.036

    Article  PubMed  Google Scholar 

  7. Liu Z, Gatt A, Werner SJ, Mikati MA, Holmes GL (1994) Long-term behavioral deficits following pilocarpine seizures in immature rats. Epilepsy Res. https://doi.org/10.1016/0920-1211(94)90062-0

    Article  PubMed  Google Scholar 

  8. Gröticke I, Hoffmann K, Löscher W (2007) Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp Neurol. https://doi.org/10.1016/j.expneurol.2007.06.021

    Article  PubMed  Google Scholar 

  9. Inostroza M, Cid E, Brotons-Mas J, Gal B, Aivar P, Uzcategui YG, Sandi C, Menendez de la Prida L (2011) Hippocampal-dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS ONE. https://doi.org/10.1371/journal.pone.0022372

    Article  PubMed  PubMed Central  Google Scholar 

  10. Müller CJ, Gröticke I, Bankstahl M, Löscher W (2009) Behavioral and cognitive alterations, spontaneous seizures, and neuropathology developing after a pilocarpine-induced status epilepticus in C57BL/6 mice. Exp Neurol. https://doi.org/10.1016/j.expneurol.2009.05.035

    Article  PubMed  Google Scholar 

  11. Murphy GG (2013) Spatial learning and memory—what’s TLE got to do with it? Epilepsy Curr. https://doi.org/10.5698/1535-7511-13.1.26

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harrison FE, Hosseini AH, McDonald MP (2009) Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav Brain Res. https://doi.org/10.1016/j.bbr.2008.10.015

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hölscher C (1999) Stress impairs performance in spatial water maze learning tasks. Behav Brain Res. https://doi.org/10.1016/S0166-4328(98)00134-X

    Article  PubMed  Google Scholar 

  14. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. https://doi.org/10.1037/h0077579

    Article  PubMed  Google Scholar 

  15. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000412

    Article  PubMed  PubMed Central  Google Scholar 

  16. Riban V, Bouilleret V, Pham-Lê BT, Fritschy JM, Marescaux C, Depaulis A (2002) Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience. https://doi.org/10.1016/S0306-4522(02)00064-7

    Article  PubMed  Google Scholar 

  17. Duveau V, Pouyatos B, Bressand K, Bouyssières C, Chabrol T, Roche Y, Depaulis A, Roucard C (2016) Differential effects of antiepileptic drugs on focal seizures in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. CNS Neurosci Ther. https://doi.org/10.1111/cns.12523

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates 2. Academic Press, San Diego

    Google Scholar 

  19. Sunyer B, Patil S, Höger H, Lubec G (2007) Barnes maze, a useful task to assess spatial reference memory in the mice. Protoc Exch. https://doi.org/10.1038/nprot.2007.390

    Article  Google Scholar 

  20. Harrison FE, Reiserer RS, Tomarken AJ, McDonald MP (2006) Spatial and nonspatial escape strategies in the Barnes maze. Learn Mem. http://www.learnmem.org/cgi/doi/10.1101/lm.334306

  21. Rosenfeld CS, Ferguson SA (2014) Barnes maze testing strategies with small and large rodent models. J Vis Exp. https://doi.org/10.3791/51194

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bach ME, Hawkins RD, Osman M, Kandel ER, Mayford M (1995) Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency. Cell. https://doi.org/10.1016/0092-8674(95)90010-1

    Article  PubMed  Google Scholar 

  23. Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci. https://doi.org/10.1523/JNEUROSCI.5516-05.2006

    Article  PubMed  Google Scholar 

  24. Klein S, Bankstahl JP, Löscher W, Bankstahl M (2015) Sucrose consumption test reveals pharmacoresistant depression-associated behavior in two mouse models of temporal lobe epilepsy. Exp Neurol. https://doi.org/10.1016/j.expneurol.2014.09.004

    Article  PubMed  Google Scholar 

  25. Pearson JN, Schulz KM, Patel M (2014) Specific alterations in the performance of learning and memory tasks in models of chemoconvulsant-induced status epilepticus. Epilepsy Res. https://doi.org/10.1016/j.eplepsyres.2014.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. McKee HR, Privitera MD (2017) Stress as a seizure precipitant: identification, associated factors, and treatment options. Seizure. https://doi.org/10.1016/j.seizure.2016.12.009

    Article  PubMed  Google Scholar 

  27. Vorhees CV, Williams MT (2014) Assessing spatial learning and memory in rodents. Inst Lab Anim Res J. https://doi.org/10.1093/ilar/ilu013

    Article  Google Scholar 

  28. Cánovas R, León I, Serrano P, Roldán MD, Cimadevilla JM (2011) Spatial navigation impairment in patients with refractory temporal lobe epilepsy: evidence from a new virtual reality-based task. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2011.07.021

    Article  PubMed  Google Scholar 

  29. Bell BD (2013) Route learning impairment in temporal lobe epilepsy. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2012.07.023

    Article  PubMed  Google Scholar 

  30. Oliveira CV, Grigoletto J, Funck VR, Ribeiro LR, Freire Royes LF, Fighera MR, Furian AF, Oliveira MS (2015) Evaluation of potential gender-related differences in behavioral and cognitive alterations following pilocarpine-induced status epilepticus in C57BL/6 mice. Physiol Behav. https://doi.org/10.1016/j.physbeh.2015.03.004

    Article  PubMed  Google Scholar 

  31. Illouz T, Madar R, Clague C, Griffioen KJ, Louzoun Y, Okun E (2016) Unbiased classification of spatial strategies in the Barnes maze. Bioinformatics. https://doi.org/10.1093/bioinformatics/btw376

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Yana Van Den Herrewegen is a research fellow of the Fund for Scientific Research Flanders (FWO). An Buckinx is a research fellow of the Fund for Strategic Basic Research (SB-FWO). We would like to thank Gino De Smet for his technical assistance. This study was supported by the Scientific Fund Willy Gepts of UZ Brussel, the Queen Elizabeth Medical Foundation (ING prize) and the Vrije Universiteit Brussel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse Smolders.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures were carried out in accordance with the National Rules on Animal Experimentation and were approved by the Ethical Committee for Animal Experiments of the Faculty of Medicine and Pharmacy of the Vrije Universiteit Brussel, Brussels, Belgium.

Research Involving Human Participants

This article does not contain any studies with human participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 210 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Den Herrewegen, Y., Denewet, L., Buckinx, A. et al. The Barnes Maze Task Reveals Specific Impairment of Spatial Learning Strategy in the Intrahippocampal Kainic Acid Model for Temporal Lobe Epilepsy. Neurochem Res 44, 600–608 (2019). https://doi.org/10.1007/s11064-018-2610-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2610-z

Keywords

Navigation