Skip to main content
Log in

Localization of Human Glutamate Dehydrogenases Provides Insights into Their Metabolic Role and Their Involvement in Disease Processes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate dehydrogenase (GDH) catalyzes the reversible deamination of l-glutamate to α-ketoglutarate and ammonia. In mammals, GDH contributes to important processes such as amino acid and carbohydrate metabolism, energy production, ammonia management, neurotransmitter recycling and insulin secretion. In humans, two isoforms of GDH are found, namely hGDH1 and hGDH2, with the former being ubiquitously expressed and the latter found mainly in brain, testis and kidney. These two iso-enzymes display highly divergent allosteric properties, especially concerning their basal activity, ADP activation and GTP inhibition. On the other hand, both enzymes are thought to predominantly localize in the mitochondrial matrix, even though alternative localizations have been proposed. To further study the subcellular localization of the two human iso-enzymes, we created HEK293 cell lines stably over-expressing hGDH1 and hGDH2. In these cell lines, immunofluorescence and enzymatic analyses verified the overexpression of both hGDH1 and hGDH2 iso-enzymes, whereas subcellular fractionation followed by immunoblotting showed their predominantly mitochondrial localization. Given that previous studies have only indirectly compared the subcellular localization of the two iso-enzymes, we co-expressed them tagged with different fluorescent dyes (green and red fluorescent protein for hGDH1 and hGDH2, respectively) and found them to co-localize. Despite the wealth of information related to the functional properties of hGDH1 and hGDH2 and the availability of the hGDH1 structure, there is still an ongoing debate concerning their metabolic role and their involvement in disease processes. Data on the localization of hGDHs, as the ones presented here, could contribute to better understanding of the function of these important human enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Strecker HJ (1953) Glutamic dehydrogenase. Arch Biochem Biophys 46(1):128–140. https://doi.org/10.1016/0003-9861(53)90176-3

    Article  CAS  PubMed  Google Scholar 

  2. Hudson R, Daniel R (1993) L-glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106(4):767–792

    CAS  PubMed  Google Scholar 

  3. Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66(5):899–908. https://doi.org/10.1002/jnr.10054

    Article  CAS  PubMed  Google Scholar 

  4. Hutson SM, Islam MM, Zaganas I (2011) Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways. Neurochem Int 59(4):518–524. https://doi.org/10.1016/j.neuint.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  5. Zaganas I, Spanaki C, Plaitakis A (2012) Expression of human GLUD2 glutamate dehydrogenase in human tissues: functional implications. Neurochem Int 61(4):455–462. https://doi.org/10.1016/j.neuint.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  6. Li M, Li C, Allen A, Stanley CA, Smith TJ (2014) Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis. Neurochem Res 39(3):433–445. https://doi.org/10.1007/s11064-013-1173-2

    Article  CAS  PubMed  Google Scholar 

  7. Fahien LA, MacDonald MJ (2011) The complex mechanism of glutamate dehydrogenase in insulin secretion. Diabetes 60(10):2450–2454. https://doi.org/10.2337/db10-1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McKenna M, Stridh M, McNair L, Sonnewald U, Waagepetersen H, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94(12):1561–1571. https://doi.org/10.1002/jnr.23908

    Article  CAS  PubMed  Google Scholar 

  9. McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59(4):525–533. https://doi.org/10.1016/j.neuint.2011.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spanaki C, Plaitakis A (2012) The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res 21(1):117–127. https://doi.org/10.1007/s12640-011-9285-4

    Article  CAS  PubMed  Google Scholar 

  11. Lorin S, Tol MJ, Bauvy C, Strijland A, Poüs C, Verhoeven AJ, Codogno P, Meijer AJ (2013) Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9(6):850–860. https://doi.org/10.4161/auto.24083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shashidharan P, Michaelidis TM, Robakis NK, Kresovali A, Papamatheakis J, Plaitakis A (1994) Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J Biol Chem 269(24):16971–16976

    CAS  PubMed  Google Scholar 

  13. Zaganas IV, Kanavouras K, Borompokas N, Arianoglou G, Dimovasili C, Latsoudis H, Vlassi M, Mastorodemos V (2014) The odyssey of a young gene: structure–function studies in human glutamate dehydrogenases reveal evolutionary-acquired complex allosteric regulation mechanisms. Neurochem Res 39(3):471–486. https://doi.org/10.1007/s11064-014-1251-0

    Article  CAS  PubMed  Google Scholar 

  14. Burki F, Kaessmann H (2004) Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 36:1061. https://doi.org/10.1038/ng1431 https://www.nature.com/articles/ng1431#supplementary-information

  15. Varki A (2004) How to make an ape brain. Nat Genet 36:1034. https://doi.org/10.1038/ng1004-1034

    Article  CAS  PubMed  Google Scholar 

  16. Shashidharan P, Plaitakis A (2014) The discovery of human of GLUD2 glutamate dehydrogenase and its implications for cell function in health and disease. Neurochem Res 39(3):460–470. https://doi.org/10.1007/s11064-013-1227-5

    Article  CAS  PubMed  Google Scholar 

  17. Zaganas I, Spanaki C, Karpusas M, Plaitakis A (2002) Substitution of Ser for Arg-443 in the regulatory domain of human housekeeping (GLUD1) glutamate dehydrogenase virtually abolishes basal activity and markedly alters the activation of the enzyme by adp and l-Leucine. J Biol Chem 277(48):46552–46558. https://doi.org/10.1074/jbc.M208596200

    Article  CAS  PubMed  Google Scholar 

  18. Zaganas I, Plaitakis A (2002) Single amino acid substitution (G456A) in the vicinity of the GTP binding domain of human housekeeping glutamate dehydrogenase markedly attenuates GTP inhibition and abolishes the cooperative behavior of the enzyme. J Biol Chem 277(29):26422–26428. https://doi.org/10.1074/jbc.M200022200

    Article  CAS  PubMed  Google Scholar 

  19. Shashidharan P, Clarke DD, Ahmed N, Moschonas N, Plaitakis A (1997) Nerve tissue-specific human glutamate dehydrogenase that is thermolabile and highly regulated by ADP. J Neurochem 68(5):1804–1811. https://doi.org/10.1046/j.1471-4159.1997.68051804.x

    Article  CAS  PubMed  Google Scholar 

  20. Zaganas I, Kanavouras K, Mastorodemos V, Latsoudis H, Spanaki C, Plaitakis A (2009) The human GLUD2 glutamate dehydrogenase: localization and functional aspects. Neurochem Int 55(1):52–63. https://doi.org/10.1016/j.neuint.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  21. Engel PC (2014) Glutamate dehydrogenases: the why and how of coenzyme specificity. Neurochem Res 39(3):426–432. https://doi.org/10.1007/s11064-013-1089-x

    Article  CAS  PubMed  Google Scholar 

  22. Bailey J, Bell ET, Bell JE (1982) Regulation of bovine glutamate dehydrogenase. The effects of pH and ADP. J Biol Chem 257(10):5579–5583

    CAS  PubMed  Google Scholar 

  23. Yudkoff M (1997) Brain metabolism of branched-chain amino acids. Glia 21 (1):92–98. https://doi.org/10.1002/(SICI)1098-1136(199709)21:1%3C92::AID-GLIA10%3E3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  24. Cooper AJL (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37(11):2439–2455. https://doi.org/10.1007/s11064-012-0803-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith HQ, Li C, Stanley CA, Smith TJ (2017) Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point. Neurochem Res. https://doi.org/10.1007/s11064-017-2428-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marcaggi P, Coles JA (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signalling. Prog Neurobiol 64(2):157–183. https://doi.org/10.1016/S0301-0082(00)00043-5

    Article  CAS  PubMed  Google Scholar 

  27. Adeva MM, Souto G, Blanco N, Donapetry C (2012) Ammonium metabolism in humans. Metab Clin Exp 61(11):1495–1511. https://doi.org/10.1016/j.metabol.2012.07.007

    Article  CAS  PubMed  Google Scholar 

  28. Zaganas I, Pajęcka K, Wendel Nielsen C, Schousboe A, Waagepetersen HS, Plaitakis A (2013) The effect of pH and ADP on ammonia affinity for human glutamate dehydrogenases. Metab Brain Dis 28(2):127–131. https://doi.org/10.1007/s11011-013-9382-6

    Article  CAS  PubMed  Google Scholar 

  29. Tsacopoulos M, Poitry-Yamate CL, Poitry S (1997) Ammonium and glutamate released by neurons are signals regulating the nutritive function of a glial cell. J Neurosci 17(7):2383–2390

    CAS  PubMed  Google Scholar 

  30. Spinelli JB, Yoon H, Ringel AE, Jeanfavre S, Clish CB, Haigis MC (2017) Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358(6365):941–946. https://doi.org/10.1126/science.aam9305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li M, Li C, Allen A, Stanley CA, Smith TJ (2012) The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys 519(2):69–80. https://doi.org/10.1016/j.abb.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  32. Mastorodemos V, Zaganas I, Spanaki C, Bessa M, Plaitakis A (2005) Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. J Neurosci Res 79(1–2):65–73. https://doi.org/10.1002/jnr.20353

    Article  CAS  PubMed  Google Scholar 

  33. Kanavouras K, Mastorodemos V, Borompokas N, Spanaki C, Plaitakis A (2007) Properties and molecular evolution of human GLUD2 (neural and testicular tissue-specific) glutamate dehydrogenase. J Neurosci Res 85(5):1101–1109. https://doi.org/10.1002/jnr.21197

    Article  CAS  PubMed  Google Scholar 

  34. Plaitakis A, Metaxari M, Shashidharan P (2000) Nerve tissue-specific (GLUD2) and housekeeping (GLUD1) human glutamate dehydrogenases are regulated by distinct allosteric mechanisms. J Neurochem 75(5):1862–1869. https://doi.org/10.1046/j.1471-4159.2000.0751862.x

    Article  CAS  PubMed  Google Scholar 

  35. Smith TJ, Schmidt T, Fang J, Wu J, Siuzdak G, Stanley CA (2002) The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol 318(3):765–777. https://doi.org/10.1016/S0022-2836(02)00161-4

    Article  CAS  PubMed  Google Scholar 

  36. Peterson PE, Pierce J, Smith TJ (1997) Crystallization and characterization of bovine liver glutamate dehydrogenase. J Struct Biol 120(1):73–77. https://doi.org/10.1006/jsbi.1997.3899

    Article  CAS  PubMed  Google Scholar 

  37. Peterson PE, Smith TJ (1999) The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure 7(7):769–782. https://doi.org/10.1016/S0969-2126(99)80101-4

    Article  CAS  PubMed  Google Scholar 

  38. Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation 1 Edited by I. A. Wilson. J Mol Biol 307(2):707–720. https://doi.org/10.1006/jmbi.2001.4499

    Article  CAS  PubMed  Google Scholar 

  39. Li M, Li C, Allen A, Stanley CA, Smith TJ (2011) The structure and allosteric regulation of glutamate dehydrogenase. Neurochem Int 59(4):445–455. https://doi.org/10.1016/j.neuint.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  40. Mastorodemos V, Kanavouras K, Sundaram S, Providaki M, Petraki Z, Kokkinidis M, Zaganas I, Logothetis DE, Plaitakis A (2015) Side-chain interactions in the regulatory domain of human glutamate dehydrogenase determine basal activity and regulation. J Neurochem 133(1):73–82. https://doi.org/10.1111/jnc.13019

    Article  CAS  PubMed  Google Scholar 

  41. Banerjee S, Schmidt T, Fang J, Stanley CA, Smith TJ (2003) Structural studies on ADP activation of mammalian glutamate dehydrogenase and the evolution of regulation. Biochemistry 42(12):3446–3456. https://doi.org/10.1021/bi0206917

    Article  CAS  PubMed  Google Scholar 

  42. Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A (2015) Expression of human GLUD1 and GLUD2 glutamate dehydrogenases in steroid producing tissues. Mol Cell Endocrinol 415:1–11. https://doi.org/10.1016/j.mce.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  43. Spanaki C, Zaganas I, Kleopa KA, Plaitakis A (2010) Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells. J Biol Chem 285(22):16748–16756. https://doi.org/10.1074/jbc.M109.092999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A (2014) Heterogeneous cellular distribution of glutamate dehydrogenase in brain and in non-neural tissues. Neurochem Res 39(3):500–515. https://doi.org/10.1007/s11064-013-1235-5

    Article  CAS  PubMed  Google Scholar 

  45. Hull J, Usmari Moraes M, Brookes E, Love S, Conway ME (2018) Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism. Neurochem Int 112:49–58. https://doi.org/10.1016/j.neuint.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  46. Spanaki C, Kotzamani D, Kleopa K, Plaitakis A (2016) Evolution of GLUD2 glutamate dehydrogenase allows expression in human cortical neurons. Mol Neurobiol 53(8):5140–5148. https://doi.org/10.1007/s12035-015-9429-2

    Article  CAS  PubMed  Google Scholar 

  47. Nissen JD, Lykke K, Bryk J, Stridh MH, Zaganas I, Skytt DM, Schousboe A, Bak LK, Enard W, Pääbo S, Waagepetersen HS (2017) Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes. Glia 65(3):474–488. https://doi.org/10.1002/glia.23105

    Article  PubMed  Google Scholar 

  48. Salganicoff L, Robertis ED (1965) Subcellular distribution of the enzymes of the glutamic acid, glutamine and γ-aminobutyric acid cycles in rat brain*. J Neurochem 12(4):287–309. https://doi.org/10.1111/j.1471-4159.1965.tb06766.x

    Article  CAS  PubMed  Google Scholar 

  49. Aoki C, Milner TA, Berger SB, Sheu KFR, Blass JP, Pickel VM (1987) Glial glutamate dehydrogenase: ultrastructural localization and regional distribution in relation to the mitochondrial enzyme, cytochrome oxidase. J Neurosci Res 18(2):305–318. https://doi.org/10.1002/jnr.490180207

    Article  CAS  PubMed  Google Scholar 

  50. Rothe F, Brosz M, Storm-Mathisen J (1994) Quantitative ultrastructural localization of glutamate dehydrogenase in the rat cerebellar cortex. Neuroscience 62(4):1133–1146. https://doi.org/10.1016/0306-4522(94)90349-2

    Article  CAS  PubMed  Google Scholar 

  51. Colon AD, Plaitakis A, Perakis A, Berl S, Clarke DD (1986) Purification and characterization of a soluble and a particulate glutamate dehydrogenase from rat brain. J Neurochem 46(6):1811–1819. https://doi.org/10.1111/j.1471-4159.1986.tb08500.x

    Article  CAS  PubMed  Google Scholar 

  52. Rajas F, Rousset B (1993) A membrane-bound form of glutamate dehydrogenase possesses an ATP-dependent high-affinity microtubule-binding activity. Biochem J 295(2):447–455. https://doi.org/10.1042/bj2950447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee W, Shin S, Cho S, Park J (1999) Purification and characterization of glutamate dehydrogenase as another isoprotein binding to the membrane of rough endoplasmic reticulum. J Cell Biochem 76(2):244–253

    CAS  PubMed  Google Scholar 

  54. Pragnya P, Mrutyunjay S, Divya S, Shashibhal Matacharan P, Madan Mohan C, Jogeswar Satchidananda P (2011) Characterization of nuclear glutamate dehydrogenase of chicken liver and brain. Protein Pept Lett 18(12):1194–1203. https://doi.org/10.2174/092986611797642698

    Article  Google Scholar 

  55. di Prisco G, Banay-Schwartz M, Strecker HJ (1968) Glutamate dehydrogenase in nuclear and mitochondrial fractions of rat liver. Biochem Biophys Res Commun 33(4):606–612. https://doi.org/10.1016/0006-291X(68)90339-2

    Article  PubMed  Google Scholar 

  56. Lai J, Sheu K, Kim Y, Clarke D, Blass J (1986) The subcellular localization of glutamate dehydrogenase (GDH): is GDH a marker for mitochondria in brain? Neurochem Res 11(5):733–744

    CAS  PubMed  Google Scholar 

  57. Plaitakis A, Kalef-Ezra E, Kotzamani D, Zaganas I, Spanaki C (2017) The glutamate dehydrogenase pathway and its roles in cell and tissue biology in health and disease. Biology 6(1):11

    PubMed Central  Google Scholar 

  58. Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A (2009) Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol 87(3):505–516. https://doi.org/10.1139/O09-008

    Article  CAS  PubMed  Google Scholar 

  59. Rosso L, Marques AC, Reichert AS, Kaessmann H (2008) Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive darwinian selection. PLOS Genet 4(8):e1000150. https://doi.org/10.1371/journal.pgen.1000150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kalef-Ezra E, Kotzamani D, Zaganas I, Katrakili N, Plaitakis A, Tokatlidis K (2016) Import of a major mitochondrial enzyme depends on synergy between two distinct helices of its presequence. Biochem J 473(18):2813–2829. https://doi.org/10.1042/bcj20160535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ebrahimi-Fakhari D, Saffari A, Wahlster L, Di Nardo A, Turner D, Lewis Tommy L, Conrad C, Rothberg Jonathan M, Lipton Jonathan O, Kölker S, Hoffmann Georg F, Han M-J, Polleux F, Sahin M (2016) Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep 17(4):1053–1070. https://doi.org/10.1016/j.celrep.2016.09.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karnati S, Lüers G, Pfreimer S, Baumgart-Vogt E (2013) Mammalian SOD2 is exclusively located in mitochondria and not present in peroxisomes. Histochem Cell Biol 140(2):105–117. https://doi.org/10.1007/s00418-013-1099-4

    Article  CAS  PubMed  Google Scholar 

  63. Lin C-C, Kurashige M, Liu Y, Terabayashi T, Ishimoto Y, Wang T, Choudhary V, Hobbs R, Liu L-K, Lee P-H, Outeda P, Zhou F, Restifo NP, Watnick T, Kawano H, Horie S, Prinz W, Xu H, Menezes LF, Germino GG (2018) A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci Rep 8(1):2743. https://doi.org/10.1038/s41598-018-20856-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carobbio S, Ishihara H, Fernandez-Pascual S, Bartley C, Martin-Del-Rio R, Maechler P (2004) Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 47(2):266–276. https://doi.org/10.1007/s00125-003-1306-2

    Article  CAS  PubMed  Google Scholar 

  65. Tanizawa Y, Nakai K, Sasaki T, Anno T, Ohta Y, Inoue H, Matsuo K, Koga M, Furukawa S, Oka Y (2002) Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion. Identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydrogenase. Diabetes 51(3):712–717. https://doi.org/10.2337/diabetes.51.3.712

    Article  CAS  PubMed  Google Scholar 

  66. Anno T, Uehara S, Katagiri H, Ohta Y, Ueda K, Mizuguchi H, Moriyama Y, Oka Y, Tanizawa Y (2004) Overexpression of constitutively activated glutamate dehydrogenase induces insulin secretion through enhanced glutamate oxidation. Am J Physiol-Endocrinol Metab 286(2):E280–E285. https://doi.org/10.1152/ajpendo.00380.2003

    Article  Google Scholar 

  67. Bao X, Pal R, Hascup KN, Wang Y, Wang W-T, Xu W, Hui D, Agbas A, Wang X, Michaelis ML, Choi I-Y, Belousov AB, Gerhardt GA, Michaelis EK (2009) Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 29(44):13929–13944. https://doi.org/10.1523/jneurosci.4413-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Q, Guo S, Jiang X, Bryk J, Naumann R, Enard W, Tomita M, Sugimoto M, Khaitovich P, Pääbo S (2016) Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development. Proc Natl Acad Sci 113(19):5358–5363. https://doi.org/10.1073/pnas.1519261113

    Article  CAS  PubMed  Google Scholar 

  69. Wang X, Bao X, Pal R, Agbas A, Michaelis EK (2010) Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate. BMC Genom 11(1):360. https://doi.org/10.1186/1471-2164-11-360

    Article  CAS  Google Scholar 

  70. Michaelis EK, Wang X, Pal R, Bao X, Hascup KN, Wang Y, Wang WT, Hui D, Agbas A, Choi IY, Belousov A, Gerhardt GA (2011) Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochem Int 59(4):473–481. https://doi.org/10.1016/j.neuint.2011.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hascup KN, Bao X, Hascup ER, Hui D, Xu W, Pomerleau F, Huettl P, Michaelis ML, Michaelis EK, Gerhardt GA (2011) Differential levels of glutamate dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 mice and the effects of overexpression of the Glud1 gene on glutamate release in striatum. ASN Neuro 3(2):AN20110005. https://doi.org/10.1042/an20110005

    Article  Google Scholar 

  72. Choi I-Y, Lee P, Wang W-T, Hui D, Wang X, Brooks WM, Michaelis EK (2014) Metabolism changes during aging in the hippocampus and striatum of Glud1 (glutamate dehydrogenase 1) transgenic mice. Neurochem Res 39(3):446–455. https://doi.org/10.1007/s11064-014-1239-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang X, Patel ND, Hui D, Pal R, Hafez MM, Sayed-Ahmed MM, Al-Yahya AA, Michaelis EK (2014) Gene expression patterns in the hippocampus during the development and aging of Glud1(glutamate dehydrogenase 1) transgenic and wild type mice. BMC Neurosci 15(1):37. https://doi.org/10.1186/1471-2202-15-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Plaitakis A, Zaganas I, Spanaki C (2013) Deregulation of glutamate dehydrogenase in human neurologic disorders. J Neurosci Res 91(8):1007–1017. https://doi.org/10.1002/jnr.23176

    Article  CAS  PubMed  Google Scholar 

  75. Kelly A, Stanley C (2001) Disorders of glutamate metabolism. Dev Disabil Res Rev 7(4):287–295

    CAS  Google Scholar 

  76. Palladino AA, Stanley CA (2010) The hyperinsulinism/hyperammonemia syndrome. Rev Endocr Metab Disord 11(3):171–178. https://doi.org/10.1007/s11154-010-9146-0

    Article  CAS  PubMed  Google Scholar 

  77. Stanley CA, Lieu YK, Hsu BYL, Burlina AB, Greenberg CR, Hopwood NJ, Perlman K, Rich BH, Zammarchi E, Poncz M (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338(19):1352–1357. https://doi.org/10.1056/nejm199805073381904

    Article  CAS  PubMed  Google Scholar 

  78. Tran C, Konstantopoulou V, Mecjia M, Perlman K, Mercimek-Mahmutoglu S, Kronick Jonathan B (2015) Hyperinsulinemic hypoglycemia: think of hyperinsulinism/hyperammonemia (HI/HA) syndrome caused by mutations in the GLUD1 gene. J Pediatr Endocrinol Metab. https://doi.org/10.1515/jpem-2014-0441

    Article  PubMed  Google Scholar 

  79. Aka S, Alanay Y, Boodhansingh K, Stanley C, Semiz S (2016) Seizures and diagnostic difficulties in hyperinsulinism-hyperammonemia syndrome. Turk J Pediatr 58(5):541–544. https://doi.org/10.24953/turkjped.2016.05.014

    Article  PubMed  Google Scholar 

  80. Ninković D, Sarnavka V, Bašnec A, Ćuk M, Ramadža Danijela P, Fumić K, Kušec V, Santer R, Barić I (2016) Hyperinsulinism-hyperammonemia syndrome: a de novo mutation of the GLUD1 gene in twins and a review of the literature. J Pediatr Endocrinol Metab. https://doi.org/10.1515/jpem-2016-0086

    Article  PubMed  Google Scholar 

  81. Kapoor RR, Flanagan SE, Arya VB, Shield JP, Ellard S, Hussain K (2013) Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur J Endocrinol 168(4):557–564. https://doi.org/10.1530/eje-12-0673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Corrêa-Giannella ML, Freire DS, Cavaleiro AM, Fortes MAZ, Giorgi RR, Pereira MAA (2012) Hyperinsulinism/hyperammonemia (HI/HA) syndrome due to a mutation in the glutamate dehydrogenase gene. Arq Bras Endocrinol Metabol 56:485–489

    PubMed  Google Scholar 

  83. Aso K, Okano Y, Takeda T, Sakamoto O, Ban K, Iida K, Yamano T, Shintaku H (2011) Spectrum of glutamate dehydrogenase mutations in Japanese patients with congenital hyperinsulinism and hyperammonemia syndrome. Osaka City Med J 57(1):1–9

    CAS  PubMed  Google Scholar 

  84. Diao C, Chen S, Xiao X, Wang T, Sun X, Wang O, Song H, Zhang Y, Yu M, Zhang Q, Wang H (2010) Two unrelated chinese patients with hyperinsulinism/hyperammonemia (HI/HA) syndrome due to mutations in glutamate dehydrogenase gene. J Pediatr Endocrinol Metab. https://doi.org/10.1515/JPEM.2010.23.7.733

    Article  PubMed  Google Scholar 

  85. Kapoor RR, Flanagan SE, Fulton P, Chakrapani A, Chadefaux B, Ben-Omran T, Banerjee I, Shield JP, Ellard S, Hussain K (2009) Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations. Eur J Endocrinol 161(5):731–735. https://doi.org/10.1530/eje-09-0615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Lonlay P, Benelli C, Fouque F, Ganguly A, Aral B, Dionisi-Vici C, Touati G, Heinrichs C, Rabier D, Kamoun P, Robert J-J, Stanley C, Saudubray J-M (2001) Hyperinsulinism and hyperammonemia syndrome: report of twelve unrelated patients. Pediatr Res 50:353. https://doi.org/10.1203/00006450-200109000-00010

    Article  PubMed  Google Scholar 

  87. Santer R, Kinner M, Passarge M, Superti-Furga A, Mayatepek E, Meissner T, Schneppenheim R, Schaub J (2001) Novel missense mutations outside the allosteric domain of glutamate dehydrogenase are prevalent in European patients with the congenital hyperinsulinism-hyperammonemia syndrome. Hum Genet 108(1):66–71. https://doi.org/10.1007/s004390000432

    Article  CAS  PubMed  Google Scholar 

  88. Yasuda K, Koda N, Kadowaki H, Ogawa Y, Kimura S, Kadowaki T, Akanuma Y (2001) A Japanese case of congenital hyperinsulinism with hyperammonemia due to a mutation in glutamate dehydrogenase (GLUD1) gene. Intern Med 40(1):32–37. https://doi.org/10.2169/internalmedicine.40.32

    Article  CAS  PubMed  Google Scholar 

  89. Barrosse-Antle M, Su C, Chen P, Boodhansingh KE, Smith TJ, Stanley CA, De León DD, Li C (2017) A severe case of hyperinsulinism due to hemizygous activating mutation of glutamate dehydrogenase. Pediatr Diabetes 18(8):911–916. https://doi.org/10.1111/pedi.12507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Snider KE, Becker S, Boyajian L, Shyng SL, MacMullen C, Hughes N, Ganapathy K, Bhatti T, Stanley CA, Ganguly A (2013) Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endocrinol Metab 98(2):E355–E363. https://doi.org/10.1210/jc.2012-2169

    Article  CAS  Google Scholar 

  91. Stanley CA (2009) Regulation of glutamate metabolism and insulin secretion by glutamate dehydrogenase in hypoglycemic children1–4. Am J Clin Nutr 90(3):862S–866S. https://doi.org/10.3945/ajcn.2009.27462AA

    Article  CAS  Google Scholar 

  92. Kibbey RG, Choi CS, Lee H-Y, Cabrera O, Pongratz RL, Zhao X, Birkenfeld AL, Li C, Berggren P-O, Stanley C, Shulman GI (2014) Mitochondrial GTP insensitivity contributes to hypoglycemia in hyperinsulinemia hyperammonemia by inhibiting glucagon release. Diabetes 63(12):4218–4229. https://doi.org/10.2337/db14-0783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Andersson LE, Shcherbina L, Al-Majdoub M, Vishnu N, Arroyo CB, Carrara JA, Wollheim CB, Fex M, Mulder H, Wierup N, Spégel P (2017) Glutamine-elicited secretion of glucagon-like peptide 1 (GLP-1) is governed by an activated glutamate dehydrogenase. Diabetes. https://doi.org/10.2337/db16-1441

    Article  PubMed  PubMed Central  Google Scholar 

  94. Göhring I, Mulder H (2012) Glutamate dehydrogenase, insulin secretion, and type 2 diabetes: a new means to protect the pancreatic β-cell? J Endocrinol 212(3):239–242. https://doi.org/10.1530/joe-11-0481

    Article  PubMed  Google Scholar 

  95. Pournourmohammadi S, Grimaldi M, Stridh MH, Lavallard V, Waagepetersen HS, Wollheim CB, Maechler P (2017) Epigallocatechin-3-gallate (EGCG) activates AMPK through the inhibition of glutamate dehydrogenase in muscle and pancreatic ß-cells: a potential beneficial effect in the pre-diabetic state? Int J Biochem Cell Biol 88:220–225. https://doi.org/10.1016/j.biocel.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  96. Stanley CA (2011) Two genetic forms of hyperinsulinemic hypoglycemia caused by dysregulation of glutamate dehydrogenase. Neurochem Int 59(4):465–472. https://doi.org/10.1016/j.neuint.2010.11.017

    Article  CAS  PubMed  Google Scholar 

  97. De Lonlay P, Giurgea I, Sempoux C, Touati G, Jaubert F, Rahier J, Ribeiro M, Brunelle F, Nihoul-Fékété C, Robert J-J, Saudubray J-M, Stanley C, Bellanné-Chantelot C (2005) Dominantly inherited hyperinsulinaemic hypoglycaemia. J Inherit Metab Dis 28(3):267–276. https://doi.org/10.1007/s10545-005-7057-0

    Article  PubMed  Google Scholar 

  98. Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S, Xiong G, Chen J, Stokes D, Butt YM, Jones PM, Collins HW, Cohen NA, Cohen AS, Nissim I, Smith TJ, Strauss AW, Matschinsky FM, Bennett MJ, Stanley CA (2010) Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem 285(41):31806–31818. https://doi.org/10.1074/jbc.M110.123638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Narayan SB, Master SR, Sireci AN, Bierl C, Stanley PE, Li C, Stanley CA, Bennett MJ (2012) Short-chain 3-hydroxyacyl-coenzyme a dehydrogenase associates with a protein super-complex integrating multiple metabolic pathways. PLoS ONE 7(4):e35048. https://doi.org/10.1371/journal.pone.0035048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bahi-Buisson N, Roze E, Dionisi C, Escande F, Valayannopoulos V, Feillet F, Heinrichs C (2008) Neurological aspects of hyperinsulinism–hyperammonaemia syndrome. Dev Med Child Neurol 50(12):945–949. https://doi.org/10.1111/j.1469-8749.2008.03114.x

    Article  PubMed  Google Scholar 

  101. Kelly A, Stanley CA (2008) Neurological aspects in hyperinsulinism-hyperammonaemia syndrome. Dev Med Child Neurol 50(12):888–888. https://doi.org/10.1111/j.1469-8749.2008.03149.x

    Article  PubMed  Google Scholar 

  102. Nakano K, Kobayashi K, Okano Y, Aso K, Ohtsuka Y (2012) Intractable absence seizures in hyperinsulinism-hyperammonemia syndrome. Pediatr Neurol 47(2):119–122. https://doi.org/10.1016/j.pediatrneurol.2012.04.019

    Article  PubMed  Google Scholar 

  103. Balasubramaniam S, Kapoor R, Yeow J, Lim P, Flanagan S, Ellard S, Hussain K (2011) Biochemical evaluation of an infant with hypoglycemia resulting from a novel de novo mutation of the GLUD1 gene and hyperinsulinism-hyperammonemia syndrome. J Pediatr Endocrinol Metab 24(7–8):573–577

    PubMed  Google Scholar 

  104. Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42(Suppl 3):8–12

    PubMed  Google Scholar 

  105. Shetty AK, Upadhya D (2016) GABA-ergic cell therapy for epilepsy: advances, limitations and challenges. Neurosci Biobehav Rev 62:35–47. https://doi.org/10.1016/j.neubiorev.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  106. Levy LM, Hallett M (2002) Impaired brain GABA in focal dystonia. Ann Neurol 51(1):93–101

    CAS  PubMed  Google Scholar 

  107. Malthankar-Phatak GH, De Lanerolle N, Eid T, Spencer DD, Behar KL, Spencer SS, Kim JH, Lai JCK (2006) Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy. Epilepsia 47(8):1292–1299. https://doi.org/10.1111/j.1528-1167.2006.00543.x

    Article  CAS  PubMed  Google Scholar 

  108. Sherwin A, Quesney F, Gauthier S, Olivier A, Robitaille Y, McQuaid P, Harvey C, van Gelder N (1984) Enzyme changes in actively spiking areas of human epileptic cerebral cortex. Neurology 34(7):927–933

    CAS  PubMed  Google Scholar 

  109. Rasgado Lourdes AV, Reyes Guillermo C, Díaz Fernando V (2015) Modulation of brain glutamate dehydrogenase as a tool for controlling seizures. Acta Pharm. https://doi.org/10.1515/acph-2015-0033

    Article  PubMed  Google Scholar 

  110. Badawi Y, Pal R, Hui D, Michaelis EK, Shi H (2015) Ischemic tolerance in an in vivo model of glutamate preconditioning. J Neurosci Res 93(4):623–632. https://doi.org/10.1002/jnr.23517

    Article  CAS  PubMed  Google Scholar 

  111. Kim AY, Baik EJ (2018) Glutamate dehydrogenase as a neuroprotective target against neurodegeneration. Neurochem Res. https://doi.org/10.1007/s11064-018-2467-1

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kim AY, Jeong K-H, Lee JH, Kang Y, Lee SH, Baik EJ (2017) Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 340:487–500. https://doi.org/10.1016/j.neuroscience.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  113. Hohnholt MC, Andersen VH, Andersen JV, Christensen SK, Karaca M, Maechler P, Waagepetersen HS (2017) Glutamate dehydrogenase is essential to sustain neuronal oxidative energy metabolism during stimulation. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678x17714680

    Article  PubMed  Google Scholar 

  114. Plaitakis A, Latsoudis H, Kanavouras K, Ritz B, Bronstein JM, Skoula I, Mastorodemos V, Papapetropoulos S, Borompokas N, Zaganas I, Xiromerisiou G, Hadjigeorgiou GM, Spanaki C (2009) Gain-of-function variant in GLUD2 glutamate dehydrogenase modifies Parkinson’s disease onset. Eur J Hum Genet 18:336. https://doi.org/10.1038/ejhg.2009.179 https://www.nature.com/articles/ejhg2009179#supplementary-information

  115. Plaitakis A, Caroscio JT (1987) Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 22(5):575–579. https://doi.org/10.1002/ana.410220503

    Article  CAS  PubMed  Google Scholar 

  116. Sorbi S, Tonini S, Giannini E, Piacentini S, Marini P, Amaducci L (1986) Abnormal platelet glutamate dehydrogenase activity and activation in dominant and nondominant olivopontocerebellar atrophy. Ann Neurol 19(3):239–245. https://doi.org/10.1002/ana.410190304

    Article  CAS  PubMed  Google Scholar 

  117. Plaitakis A (1990) Glutamate dysfunction and selective motor neuron degeneration inamyotrophic lateral sclerosis: a hypothesis. Ann Neurol 28(1):3–8. https://doi.org/10.1002/ana.410280103

    Article  CAS  PubMed  Google Scholar 

  118. Plaitakis A, Berl S, Yahr MD (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase. Ann Neurol 15(2):144–153. https://doi.org/10.1002/ana.410150206

    Article  CAS  PubMed  Google Scholar 

  119. Plaitakis A, Nicklas WJ, Desnick RJ (1980) Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome. Ann Neurol 7(4):297–303. https://doi.org/10.1002/ana.410070403

    Article  CAS  PubMed  Google Scholar 

  120. Plaitakis A, Flessas P, Natsiou A, Shashidharan P (1993) Glutamate dehydrogenase deficiency in cerebellar degenerations: clinical, biochemical and molecular genetic aspects. Can J Neurol Sci 20(Suppl 3):S109–S116

    Google Scholar 

  121. Burbaeva GS, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS (2005) Glutamate metabolizing enzymes in prefrontal cortex of Alzheimer’s disease patients. Neurochem Res 30(11):1443–1451. https://doi.org/10.1007/s11064-005-8654-x

    Article  CAS  PubMed  Google Scholar 

  122. Jin L, Li D, Alesi Gina N, Fan J, Kang H-B, Lu Z, Boggon Titus J, Jin P, Yi H, Wright Elizabeth R, Duong D, Seyfried Nicholas T, Egnatchik R, DeBerardinis Ralph J, Magliocca Kelly R, He C, Arellano Martha L, Khoury Hanna J, Shin Dong M, Khuri Fadlo R, Kang S (2015) Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell 27(2):257–270. https://doi.org/10.1016/j.ccell.2014.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Takeuchi Y, Nakayama Y, Fukusaki E, Irino Y (2018) Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion. Biochem Biophys Res Commun 495(1):761–767. https://doi.org/10.1016/j.bbrc.2017.11.088

    Article  CAS  PubMed  Google Scholar 

  124. Jin L, Chun J, Pan C, Kumar A, Zhang G, Ha Y, Li D, Alesi GN, Kang Y, Zhou L, Yu W-M, Magliocca KR, Khuri FR, Qu C-K, Metallo C, Owonikoko TK, Kang S (2018) The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell 69(1):87–99.e87. https://doi.org/10.1016/j.molcel.2017.11.025

    Article  CAS  PubMed  Google Scholar 

  125. Zhang J, Wang G, Mao Q, Li S, Xiong W, Lin Y, Ge J (2016) Glutamate dehydrogenase (GDH) regulates bioenergetics and redox homeostasis in human glioma. Oncotarget 295:799–800

    Google Scholar 

  126. Yang C, Sudderth J, Dang T, Bachoo RG, McDonald JG, DeBerardinis RJ (2009) Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Can Res 69(20):7986–7993. https://doi.org/10.1158/0008-5472.Can-09-2266

    Article  CAS  Google Scholar 

  127. Waitkus MS, Pirozzi CJ, Moure CJ, Diplas BH, Hansen LJ, Carpenter AB, Yang R, Wang Z, Ingram BO, Karoly ED, Mohney RP, Spasojevic I, McLendon RE, Friedman HS, He Y, Bigner DD, Yan H (2018) Adaptive evolution of the GDH2 allosteric domain promotes gliomagenesis by resolving IDH1R132H-induced metabolic liabilities. Cancer Res 78(1):36–50. https://doi.org/10.1158/0008-5472.Can-17-1352

    Article  CAS  PubMed  Google Scholar 

  128. Chen R, Nishimura MC, Kharbanda S, Peale F, Deng Y, Daemen A, Forrest WF, Kwong M, Hedehus M, Hatzivassiliou G, Friedman LS, Phillips HS (2014) Hominoid-specific enzyme GLUD2 promotes growth of IDH1R132H glioma. Proc Natl Acad Sci 111(39):14217–14222. https://doi.org/10.1073/pnas.1409653111

    Article  CAS  PubMed  Google Scholar 

  129. Li M, Allen A, Smith TJ (2007) High throughput screening reveals several new classes of glutamate dehydrogenase inhibitors. Biochemistry 46(51):15089–15102. https://doi.org/10.1021/bi7018783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhu M, Fang J, Zhang J, Zhang Z, Xie J, Yu Y, Ruan JJ, Chen Z, Hou W, Yang G, Su W, Ruan BH (2017) Biomolecular interaction assays identified dual inhibitors of glutaminase and glutamate dehydrogenase that disrupt mitochondrial function and prevent growth of cancer cells. Anal Chem 89(3):1689–1696. https://doi.org/10.1021/acs.analchem.6b03849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work would not have been completed without the valuable assistance of Dr. Christina Dimovasili. We would also like to thank Dr. Dimitra Kotzamani and Dr. Maria Savaki for their help with confocal microscopy, Cynthia Manassaki for coordinating the overall project and Rena Skoula for her continuous aid with technical issues. Finally, we cordially acknowledge the vision and inspiration to work in this exciting field of research provided to us by Professor Andreas Plaitakis.

Funding

This work has been supported by intramural grants of the University of Crete, Heraklion, Crete, Greece, through the Special Account for Research - Research Funding Programs: (1) “Structural studies on human glutamate dehydrogenase iso-enzymes” (Grant Code: KA4374), (2) “Knock-out of GLUD1 and GLUD2 genes from human cell lines, using the CRISPR/Cas9 system” (Grant Code: KA4435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Zaganas.

Ethics declarations

Conflict of interest

All authors declared that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathioudakis, L., Bourbouli, M., Daklada, E. et al. Localization of Human Glutamate Dehydrogenases Provides Insights into Their Metabolic Role and Their Involvement in Disease Processes. Neurochem Res 44, 170–187 (2019). https://doi.org/10.1007/s11064-018-2575-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2575-y

Keywords

Navigation