Advertisement

Neurochemical Research

, Volume 43, Issue 5, pp 1096–1103 | Cite as

Xueshuantong Injection (Lyophilized) Attenuates Cerebral Ischemia/Reperfusion Injury by the Activation of Nrf2–VEGF Pathway

  • Hong Guo
  • Dickson Adah
  • Peter Bai James
  • Qingqing Liu
  • Guozheng Li
  • Peter Ahmadu
  • Lijuan Chai
  • Shaoxia Wang
  • Yang Liu
  • Limin Hu
Original Paper
  • 182 Downloads

Abstract

Xueshuantong injection (Lyophilized, XST), extracted from the traditional Chinese medicinal herb Panax notoginseng, has neuroprotective effect on cerebral ischemia. Revascularization of ischemic tissue is good for the therapy of cerebrovascular disease. In this study, angiogenic potentiality and possible mechanism of XST for cerebral ischemia were explored. Rats were subjected to transient middle cerebral artery occlusion (MCAO), and then intraperitoneally administered with XST daily for 3 or 7 consecutive days. The neurological function deficits, and endogenous antioxidant capacity were evaluated. Post-stroke angiogenesis and vascularization were assessed by ELISA and immunohistochemical staining. Transcription levels of Nrf2, HO-1, NQO1 in brain tissues were analyzed by real-time RT-PCR. The results showed that XST could remarkably ameliorate neuronal functional deficit, promote angiogenesis and vascularization after MCAO. The mechanism of angiogenesis might be related to endogenous antioxidant capacity and Nrf2 pathway. In conclusion, administered XST for 7 days after stroke could significantly improve functional recovery and promote angiogenesis, that might be related to Nrf2 signaling pathway. These findings could provide scientific evidence for the use of XST in cerebral ischemic diseases and provide theoretical support for further studies.

Keywords

Xueshuantong Angiogenesis Nrf2–VEGF pathway Focal cerebral ischemia 

Notes

Acknowledgements

This research project was supported by the Key State Science and Technology Projects (2012ZX09101201-004), Tianjin Application Research Foundation (14JCYBJC28900), Guangxi Science and Technology Development Plan (14125008-2-5).

References

  1. 1.
    Zhu XH, Li SJ, Hu HH, Sun LR, Das M, Gao TM (2010) Neuroprotective effects of xiao-xu-ming decoction against ischemic neuronal injury in vivo and in vitro. J Ethnopharmacol 127:38–46CrossRefPubMedGoogle Scholar
  2. 2.
    Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD (1997) The codependence of angiogenesis and chronic inflammation. FASEB J 11:457–465CrossRefPubMedGoogle Scholar
  4. 4.
    Sporn MB, Liby KT (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 12:564–571CrossRefPubMedGoogle Scholar
  5. 5.
    Wei Y, Gong J, Xu Z, Duh EJ (2016) Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy. Free Radic Biol Med 99:234–243CrossRefPubMedGoogle Scholar
  6. 6.
    Gao L, Zhao H, Liu Q, Song J, Xu C, Liu P, Gong W, Wang R, Liu KJ, Luo Y (2012) Improvement of hematoma absorption and neurological function in patients with acute intracerebral hemorrhage treated with Xueshuantong. J Neurol Sci 323:236–240CrossRefPubMedGoogle Scholar
  7. 7.
    Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RN, Sasisekharan R, Fan TP (2004) Modulating angiogenesis: the yin and the yang in ginseng. Circulation 110:1219–1225CrossRefPubMedGoogle Scholar
  8. 8.
    Huang YC, Chen CT, Chen SC, Lai PH, Liang HC, Chang Y, Yu LC, Sung HW (2005) A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharm Res 22:636–646CrossRefPubMedGoogle Scholar
  9. 9.
    Yang BR, Hong SJ, Lee SM, Cong WH, Wan JB, Zhang ZR, Zhang QW, Zhang Y, Wang YT, Lin ZX (2016) Pro-angiogenic activity of notoginsenoside R1 in human umbilical vein endothelial cells in vitro and in a chemical-induced blood vessel loss model of zebrafish in vivo. Chin J Integr Med 22:420–429CrossRefPubMedGoogle Scholar
  10. 10.
    Guo H, Li MJ, Liu QQ, Guo LL, Ma MM, Wang SX, Yu B, Hu LM (2014) Danhong injection attenuates ischemia/reperfusion-induced brain damage which is associating with Nrf2 levels in vivo and in vitro. Neurochem Res 39:1817–1824CrossRefPubMedGoogle Scholar
  11. 11.
    Schaar KL, Brenneman MM, Savitz SI (2010) Functional assessments in the rodent stroke model. Exp Transl Stroke Med 2:13CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A, Chopp M (2007) Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 27:6–13CrossRefPubMedGoogle Scholar
  13. 13.
    Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4:1560–1564CrossRefPubMedGoogle Scholar
  14. 14.
    Tanaka R, Mochizuki H, Suzuki A, Katsube N, Ishitani R, Mizuno Y, Urabe T (2002) Induction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in rat brain after focal ischemia/reperfusion. J Cereb Blood Flow Metab 22:280–288CrossRefPubMedGoogle Scholar
  15. 15.
    Wang X, Wang S, Wang J, Guo H, Dong Z, Chai L, Hu L, Zhang Y, Wang H, Chen L (2015) Neuroprotective effect of Xueshuantong for injection (lyophilized) in transient and permanent rat cerebral ischemia model. Evid Based Complement Alternat Med 2015:134685PubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu J, Wang Y, Akamatsu Y, Lee CC, Stetler RA, Lawton MT, Yang GY (2014) Vascular remodeling after ischemic stroke: mechanisms and therapeutic potentials. Prog Neurobiol 115:138–156CrossRefPubMedGoogle Scholar
  17. 17.
    Manuel GE, Johnson T, Liu D (2017) Therapeutic angiogenesis of exosomes for ischemic stroke. Int J Physiol Pathophysiol Pharmacol 9:188–191PubMedPubMedCentralGoogle Scholar
  18. 18.
    Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32CrossRefPubMedGoogle Scholar
  19. 19.
    Shim JW, Madsen JR (2017) VEGF signaling in neurological disorders. Int J Mol Sci 19:E275CrossRefGoogle Scholar
  20. 20.
    Yao XH, Li XJ (2002) Protective effects and its mechanism of panaxatriol saponins isolated from Panax notoginseng on cerebral ischemia. Zhongguo Zhong Yao Za Zhi 27:371–373PubMedGoogle Scholar
  21. 21.
    Calza L, Giardino L, Giuliani A, Aloe L, Levi-Montalcini R (2001) Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci USA 98:4160–4165CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jadhao CS, Bhatwadekar AD, Jiang Y, Boulton ME, Steinle JJ, Grant MB (2012) Nerve growth factor promotes endothelial progenitor cell-mediated angiogenic responses. Invest Ophthalmol Vis Sci 53:2030–2037CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bai Y, Leng Y, Yin G, Pu X, Huang Z, Liao X, Chen X, Yao Y (2014) Effects of combinations of BMP-2 with FGF-2 and/or VEGF on HUVECs angiogenesis in vitro and CAM angiogenesis in vivo. Cell Tissue Res 356:109–121CrossRefPubMedGoogle Scholar
  25. 25.
    Valcarcel-Ares MN, Gautam T, Warrington JP, Bailey-Downs L, Sosnowska D, de Cabo R, Losonczy G, Sonntag WE, Ungvari Z, Csiszar A (2012) Disruption of Nrf2 signaling impairs angiogenic capacity of endothelial cells: implications for microvascular aging. J Gerontol A 67:821–829CrossRefGoogle Scholar
  26. 26.
    Ji X, Wang H, Zhu J, Zhu L, Pan H, Li W, Zhou Y, Cong Z, Yan F, Chen S (2014) Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Int J Cancer 135:574–584CrossRefPubMedGoogle Scholar
  27. 27.
    Li L, Pan H, Wang H, Li X, Bu X, Wang Q, Gao Y, Wen G, Zhou Y, Cong Z, Yang Y, Tang C, Liu Z (2016) Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension. Sci Rep 6:37338CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bai Q, Lyu Z, Yang X, Pan Z, Lou J, Dong T (2016) Epigallocatechin-3-gallate promotes angiogenesis via up-regulation of Nfr2 signaling pathway in a mouse model of ischemic stroke. Behav Brain Res 21:79–86Google Scholar
  29. 29.
    Shu L, Wang C, Wang J, Zhang Y, Zhang X, Yang Y, Zhuo J, Liu J (2016) The neuroprotection of hypoxic preconditioning on rat brain against traumatic brain injury by up-regulated transcription factor Nrf2 and HO-1 expression. Neurosci Lett 611:74–80CrossRefPubMedGoogle Scholar
  30. 30.
    Dong B, Zhang Z, Xie K, Yang Y, Shi Y, Wang C, Yu Y (2018) Hemopexin promotes angiogenesis via up-regulating HO-1 in rats after cerebral ischemia-reperfusion injury. BMC Anesthesiol 18:2CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fan J, Liu D, He C, Li X, He F (2016) Inhibiting adhesion events by Panax notoginseng saponins and Ginsenoside Rb1 protecting arteries via activation of Nrf2 and suppression of p38: VCAM-1 signal pathway. J Ethnopharmacol 192:423–430CrossRefPubMedGoogle Scholar
  32. 32.
    Wang FJ, Wang SX, Chai LJ, Zhang Y, Guo H, Hu LM (2017) Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol Sin.  https://doi.org/10.1038/aps.2017.128 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hong Guo
    • 1
    • 2
  • Dickson Adah
    • 1
  • Peter Bai James
    • 1
  • Qingqing Liu
    • 1
  • Guozheng Li
    • 1
  • Peter Ahmadu
    • 1
  • Lijuan Chai
    • 1
  • Shaoxia Wang
    • 1
  • Yang Liu
    • 2
  • Limin Hu
    • 1
    • 2
  1. 1.Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Traditional Chinese Medicine PharmacologyTianjin University of Traditional Chinese MedicineTianjinChina
  2. 2.Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina

Personalised recommendations