Neurochemical Research

, Volume 43, Issue 5, pp 1075–1085 | Cite as

Distribution and Morphological Features of Microglia in the Developing Cerebral Cortex of Gyrencephalic Mammals

  • Keishi Mizuguchi
  • Toshihide Horiike
  • Naoyuki Matsumoto
  • Yoshie Ichikawa
  • Yohei Shinmyo
  • Hiroshi Kawasaki
Original Paper


Microglia have been attracting much attention because of their fundamental importance in both the mature brain and the developing brain. Though important roles of microglia in the developing cerebral cortex of mice have been uncovered, their distribution and roles in the developing cerebral cortex in gyrencephalic higher mammals have remained elusive. Here we examined the distribution and morphology of microglia in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that a number of microglia were accumulated in the germinal zones (GZs), especially in the outer subventricular zone (OSVZ), which is a GZ found in higher mammals. Furthermore, we uncovered that microglia extended their processes tangentially along inner fiber layer (IFL)-like fibers in the developing ferret cortex. The OSVZ and the IFL are the prominent features of the cerebral cortex of higher mammals. Our findings indicate that microglia may play important roles in the OSVZ and the IFL in the developing cerebral cortex of higher mammals.


Microglia Ferret Cerebral cortex OSVZ Iba-1 



Cortical plate


Germinal zone


Inner fiber layer


Inner subventricular zone


Intermediate zone


Outer subventricular zone


Ventricular zone



We are grateful to Drs. Eisuke Nishida (Kyoto University), Shigetada Nakanishi (Suntory Foundation for Life Science) and the late Yoshiki Sasai and for their continuous encouragement. We thank Zachary Blalock and Kawasaki lab members for their helpful support. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan Agency for Medical Research and Development, the Uehara Memorial Foundation and Takeda Science Foundation.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11064_2018_2520_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2295 KB)


  1. 1.
    Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326CrossRefPubMedGoogle Scholar
  2. 2.
    Pont-Lezica L, Bechade C, Belarif-Cantaut Y, Pascual O, Bessis A (2011) Physiological roles of microglia during development. J Neurochem 119:901–908CrossRefPubMedGoogle Scholar
  3. 3.
    Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of microglia in the healthy brain. J Neurosci 31:16064–16069CrossRefPubMedGoogle Scholar
  4. 4.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758CrossRefPubMedGoogle Scholar
  5. 5.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318CrossRefPubMedGoogle Scholar
  6. 6.
    Andjelkovic AV, Nikolic B, Pachter JS, Zecevic N (1998) Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Res 814:13–25CrossRefPubMedGoogle Scholar
  7. 7.
    Rezaie P, Male D (1999) Colonisation of the developing human brain and spinal cord by microglia: a review. Microsc Res Tech 45:359–382CrossRefPubMedGoogle Scholar
  8. 8.
    Swinnen N, Smolders S, Avila A, Notelaers K, Paesen R, Ameloot M, Brone B, Legendre P, Rigo JM (2013) Complex invasion pattern of the cerebral cortex by microglial cells during development of the mouse embryo. Glia 61:150–163CrossRefPubMedGoogle Scholar
  9. 9.
    Verney C, Monier A, Fallet-Bianco C, Gressens P (2010) Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 217:436–448CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ashwell K (1991) The distribution of microglia and cell death in the fetal rat forebrain. Brain Res Dev Brain Res 58:1–12CrossRefPubMedGoogle Scholar
  12. 12.
    Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152CrossRefPubMedGoogle Scholar
  13. 13.
    Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90CrossRefPubMedGoogle Scholar
  14. 14.
    Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280CrossRefPubMedGoogle Scholar
  15. 15.
    Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33:4216–4233CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cuadros MA, Martin C, Coltey P, Almendros A, Navascues J (1993) First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J Comp Neurol 330:113–129CrossRefPubMedGoogle Scholar
  17. 17.
    Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16:543–551CrossRefPubMedGoogle Scholar
  18. 18.
    Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S (2014) Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:1271–1279CrossRefPubMedGoogle Scholar
  19. 19.
    Borrell V, Gotz M (2014) Role of radial glial cells in cerebral cortex folding. Curr Opin Neurobiol 27:39–46CrossRefPubMedGoogle Scholar
  20. 20.
    Namba T, Huttner WB (2017) Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. Wiley Interdiscip Rev Dev Biol 6:e256CrossRefGoogle Scholar
  21. 21.
    Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890CrossRefPubMedGoogle Scholar
  22. 22.
    Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146:18–36CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Molnar Z, Clowry G (2012) Cerebral cortical development in rodents and primates. Prog Brain Res 195:45–70CrossRefPubMedGoogle Scholar
  24. 24.
    Poluch S, Juliano SL (2015) Fine-tuning of neurogenesis is essential for the evolutionary expansion of the cerebral cortex. Cereb Cortex 25:346–364CrossRefPubMedGoogle Scholar
  25. 25.
    Rakic P (2009) Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sun T, Hevner RF (2014) Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 15:217–232CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kawasaki H (2017) Molecular investigations of development and diseases of the brain of higher mammals using the ferret. Proc Jpn Acad B 93:259–269CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zilles K, Palomero-Gallagher N, Amunts K (2013) Development of cortical folding during evolution and ontogeny. Trends Neurosci 36:275–284CrossRefPubMedGoogle Scholar
  29. 29.
    Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kawasaki H, Toda T, Tanno K (2013) In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation. Biol Open 2:95–100CrossRefPubMedGoogle Scholar
  32. 32.
    Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699CrossRefPubMedGoogle Scholar
  33. 33.
    Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 21:1674–1694CrossRefPubMedGoogle Scholar
  34. 34.
    Berman NE, Johnson JK, Klein RM (1997) Early generation of glia in the intermediate zone of the developing cerebral cortex. Brain Res Dev Brain Res 101:149–164CrossRefPubMedGoogle Scholar
  35. 35.
    Kawasaki H, Crowley JC, Livesey FJ, Katz LC (2004) Molecular organization of the ferret visual thalamus. J Neurosci 24:9962–9970CrossRefPubMedGoogle Scholar
  36. 36.
    Iwai L, Ohashi Y, van der List D, Usrey WM, Miyashita Y, Kawasaki H (2013) FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets. Cereb Cortex 23:2204–2212CrossRefPubMedGoogle Scholar
  37. 37.
    Shinmyo Y, Terashita Y, Dinh Duong TA, Horiike T, Kawasumi M, Hosomichi K, Tajima A, Kawasaki H (2017) Folding of the cerebral cortex requires Cdk5 in upper-layer neurons in gyrencephalic mammals. Cell Rep 20:2131–2143CrossRefPubMedGoogle Scholar
  38. 38.
    Kawasaki H, Iwai L, Tanno K (2012) Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation. Mol Brain 5:24CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sehara K, Toda T, Iwai L, Wakimoto M, Tanno K, Matsubayashi Y, Kawasaki H (2010) Whisker-related axonal patterns and plasticity of layer 2/3 neurons in the mouse barrel cortex. J Neurosci 30:3082–3092CrossRefPubMedGoogle Scholar
  40. 40.
    Hoshiba Y, Toda T, Ebisu H, Wakimoto M, Yanagi S, Kawasaki H (2016) Sox11 balances dendritic morphogenesis with neuronal migration in the developing cerebral cortex. J Neurosci 36:5775–5784CrossRefPubMedGoogle Scholar
  41. 41.
    Wakimoto M, Sehara K, Ebisu H, Hoshiba Y, Tsunoda S, Ichikawa Y, Kawasaki H (2015) Classic cadherins mediate selective intracortical circuit formation in the mouse neocortex. Cereb Cortex 25:3535–3546CrossRefPubMedGoogle Scholar
  42. 42.
    Hayakawa I, Kawasaki H (2010) Rearrangement of retinogeniculate projection patterns after eye-specific segregation in mice. PLoS ONE 5:e11001CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Iwai L, Kawasaki H (2009) Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation. Neuroscience 159:1326–1337CrossRefPubMedGoogle Scholar
  44. 44.
    Toda T, Hayakawa I, Matsubayashi Y, Tanaka K, Ikenaka K, Lu QR, Kawasaki H (2008) Termination of lesion-induced plasticity in the mouse barrel cortex in the absence of oligodendrocytes. Mol Cell Neurosci 39:40–49CrossRefPubMedGoogle Scholar
  45. 45.
    Bin JM, Harris SN, Kennedy TE (2016) The oligodendrocyte-specific antibody ‘CC1’ binds Quaking 7. J Neurochem 139:181–186CrossRefPubMedGoogle Scholar
  46. 46.
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Schwarz JM, Sholar PW, Bilbo SD (2012) Sex differences in microglial colonization of the developing rat brain. J Neurochem 120:948–963PubMedPubMedCentralGoogle Scholar
  48. 48.
    Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33:2761–2772CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kloss CU, Bohatschek M, Kreutzberg GW, Raivich G (2001) Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol 168:32–46CrossRefPubMedGoogle Scholar
  50. 50.
    Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256–266CrossRefPubMedGoogle Scholar
  51. 51.
    Yamada M, Ohsawa K, Imai Y, Kohsaka S, Kamitori S (2006) X-ray structures of the microglia/macrophage-specific protein Iba1 from human and mouse demonstrate novel molecular conformation change induced by calcium binding. J Mol Biol 364:449–457CrossRefPubMedGoogle Scholar
  52. 52.
    Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9CrossRefPubMedGoogle Scholar
  53. 53.
    Jackson CA, Peduzzi JD, Hickey TL (1989) Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J Neurosci 9:1242–1253CrossRefPubMedGoogle Scholar
  54. 54.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553CrossRefPubMedGoogle Scholar
  55. 55.
    Davis EJ, Foster TD, Thomas WE (1994) Cellular forms and functions of brain microglia. Brain Res Bull 34:73–78CrossRefPubMedGoogle Scholar
  56. 56.
    Petersen MA, Dailey ME (2004) Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia 46:195–206CrossRefPubMedGoogle Scholar
  57. 57.
    Reemst K, Noctor SC, Lucassen PJ, Hol EM (2016) The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci 10:566CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Xavier AL, Menezes JR, Goldman SA, Nedergaard M (2014) Fine-tuning the central nervous system: microglial modelling of cells and synapses. Philos Trans R Soc Lond B 369:20130593CrossRefGoogle Scholar
  59. 59.
    Pont-Lezica L, Beumer W, Colasse S, Drexhage H, Versnel M, Bessis A (2014) Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation. Eur J Neurosci 39:1551–1557CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Keishi Mizuguchi
    • 1
  • Toshihide Horiike
    • 1
  • Naoyuki Matsumoto
    • 1
  • Yoshie Ichikawa
    • 1
  • Yohei Shinmyo
    • 1
  • Hiroshi Kawasaki
    • 1
  1. 1.Department of Medical Neuroscience, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan

Personalised recommendations