Advertisement

Neurochemical Research

, Volume 43, Issue 5, pp 1035–1046 | Cite as

Effects of the Serotonin 5-HT1A Receptor Biased Agonists, F13714 and F15599, on Striatal Neurotransmitter Levels Following l-DOPA Administration in Hemi-Parkinsonian Rats

  • Adrian Newman-Tancredi
  • Mark A. Varney
  • Andrew C. McCreary
Original Paper

Abstract

Peak-dose dyskinesia is associated with the dramatic increase in striatal dopamine levels that follows l-DOPA administration. The ‘false neurotransmitter’ hypothesis postulates that the latter is likely due to an aberrant processing of l-DOPA by serotonergic neurons. In keeping with this hypothesis, two highly selective ‘biased agonists’ of 5-HT1A receptors—namely F13714 and F15599 (NLX-101)—were recently shown to exhibit exceptionally potent anti-dyskinetic activity without impairing l-DOPA therapeutic properties despite their differential targeting of 5-HT1A receptor sub-populations. In this study, we investigated whether these two compounds dampened peak l-DOPA-induced dopamine microdialysate levels in the striatum of hemi-parkinsonian rats. Acute administration of either F13714 (0.04 and 0.16 mg/kg i.p.) or F15599 (0.16 and 0.64 mg/kg, i.p.) blunted l-DOPA (2 mg/kg)-induced increases in dopamine microdialysate levels in the denervated striatum (following unilateral injection of 6-OHDA into the medial forebrain bundle). No significant changes were observed on the intact side of the brain. Concurrently, both drugs profoundly reduced striatal serotonin levels on both sides of the brain. In addition, F13714 and F15599, in the presence of l-DOPA, produced a dose-dependent increase in glutamate levels, but this effect was restricted to later time points. These finding support the interpretation that F13714 and F15599 mediate their anti-dyskinetic effects by blunting of the peak in dopamine levels via activation of somatodendritic serotonin 5-HT1A receptors and the consequent inhibition of serotonergic neurons. This study adds to the growing body of evidence supporting the development of a potent 5-HT1A receptor agonist for treatment of peak-dose dyskinesia.

Keywords

5-HT1A receptors Dopamine Dyskinesia Glutamate Parkinson’s disease Serotonin 

Notes

Acknowledgements

We gratefully acknowledge the financial support of the Michael J. Fox Foundation for Parkinson’s Research and in vivo and bioanalytical support of the respective teams at Brain OnLine B.V. We thank Alexandre Seillier for assistance in preparation of the manuscript.

Compliance with Ethical Standards

Conflict of interest

Adrian Newman-Tancredi and Mark A. Varney are employees of Neurolixis Inc. At the time the studies were conducted, Andrew C. McCreary was an employee of Brain OnLine B.V.

References

  1. 1.
    Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem 139(Suppl 1):325–337CrossRefPubMedGoogle Scholar
  2. 2.
    Vijayakumar D, Jankovic J (2016) Drug-induced dyskinesia, Part 1: treatment of levodopa-induced dyskinesia. Drugs 76:759–777CrossRefPubMedGoogle Scholar
  3. 3.
    Cenci AM (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sharma S, Singh S, Sharma V, Singh VP, Deshmukh R (2015) Neurobiology of l-DOPA induced dyskinesia and the novel therapeutic strategies. Biomed Pharmacother 70:283–293CrossRefPubMedGoogle Scholar
  5. 5.
    Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136:2419–2431CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754CrossRefPubMedGoogle Scholar
  7. 7.
    Lee J, Zhu WM, Stanic D, Finkelstein DI, Horne MH, Henderson J, Lawrence AJ, O’Connor L, Tomas D, Drago J, Horne MK (2008) Sprouting of dopamine terminals and altered dopamine release and uptake in Parkinsonian dyskinaesia. Brain 131:1574–1587CrossRefPubMedGoogle Scholar
  8. 8.
    Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131PubMedGoogle Scholar
  9. 9.
    Rylander D, Parent M, O’Sullivan SS, Dovero S, Lees AJ, Bezard E, Descarries L, Cenci MA (2010) Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 68:619–628CrossRefPubMedGoogle Scholar
  10. 10.
    Cheshire PA, Williams DR (2012) Serotonergic involvement in levodopa-induced dyskinesias in Parkinson’s disease. J Clin Neurosci 19:343–348CrossRefPubMedGoogle Scholar
  11. 11.
    Cheshire P, Ayton S, Bertram KL, Ling H, Li A, McLean C, Halliday GM, O’Sullivan SS, Revesz T, Finkelstein DI, Storey E, Williams DR (2015) Serotonergic markers in Parkinson’s disease and levodopa-induced dyskinesias. Mov Disord 30:796–804CrossRefPubMedGoogle Scholar
  12. 12.
    Lee JY, Seo S, Lee JS, Kim HJ, Kim YK, Jeon BS (2015) Putaminal serotonergic innervation: monitoring dyskinesia risk in Parkinson disease. Neurology 85:853–860CrossRefPubMedGoogle Scholar
  13. 13.
    Pagano G, Niccolini F, Politis M (2017) The serotonergic system in Parkinson’s patients with dyskinesia: evidence from imaging studies. J Neural Transm.  https://doi.org/10.1007/s00702-017-1823-7 PubMedGoogle Scholar
  14. 14.
    Roussakis AA, Politis M, Towey D, Piccini P (2016) Serotonin-to-dopamine transporter ratios in Parkinson disease: relevance for dyskinesias. Neurology 86:1152–1158CrossRefPubMedGoogle Scholar
  15. 15.
    Carta M, Tronci E (2014) Serotonin system implication in l-DOPA-induced dyskinesia: from animal models to clinical investigations. Front Neurol 5:78CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lanza K, Bishop C (2018) Serotonergic targets for the treatment of l-DOPA-induced dyskinesia. J Neural Transm.  https://doi.org/10.1007/s00702-017-1837-1 PubMedGoogle Scholar
  17. 17.
    Andrade R, Huereca D, Lyons JG, Andrade EM, McGregor KM (2015) 5-HT1A receptor-mediated autoinhibition and the control of serotonergic cell firing. ACS Chem Neurosci 6:1110–1115CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bibbiani F, Oh JD, Chase TN (2001) Serotonin 5-HT1A agonist improves motor complications in rodent and primate parkinsonian models. Neurology 57:1829–1834CrossRefPubMedGoogle Scholar
  19. 19.
    Eskow KL, Gupta V, Alam S, Park JY, Bishop C (2007) The partial 5-HT(1A) agonist buspirone reduces the expression and development of l-DOPA-induced dyskinesia in rats and improves l-DOPA efficacy. Pharmacol Biochem Behav 87:306–314CrossRefPubMedGoogle Scholar
  20. 20.
    Huot P, Fox SH (2013) The serotonergic system in motor and non-motor manifestations of Parkinson’s disease. Exp Brain Res 230:463–476CrossRefPubMedGoogle Scholar
  21. 21.
    Huot P, Fox SH, Newman-Tancredi A, Brotchie JM (2011) Anatomically selective serotonergic type 1A and serotonergic type 2A therapies for Parkinson’s disease: an approach to reducing dyskinesia without exacerbating parkinsonism? J Pharmacol Exp Ther 339:2–8CrossRefPubMedGoogle Scholar
  22. 22.
    Huot P, Johnston TH, Fox SH, Newman-Tancredi A, Brotchie JM (2015) The highly-selective 5-HT agonist F15599 reduces l-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology 97:306–311CrossRefPubMedGoogle Scholar
  23. 23.
    Iderberg H, McCreary AC, Varney MA, Cenci MA, Newman-Tancredi A (2015) Activity of serotonin 5-HT1A receptor ‘biased agonists’ in rat models of Parkinson’s disease and l-DOPA-induced dyskinesia. Neuropharmacology 93:52–67CrossRefPubMedGoogle Scholar
  24. 24.
    Iderberg H, McCreary AC, Varney MA, Kleven MS, Koek W, Bardin L, Depoortère R, Cenci MA, Newman-Tancredi A (2015) NLX-112, a novel 5-HT1A receptor agonist for the treatment of l-DOPA-induced dyskinesia: behavioral and neurochemical profile in rat. Exp Neurol 271:335–350CrossRefPubMedGoogle Scholar
  25. 25.
    Meadows SM, Chambers NE, Conti MM, Bossert SC, Tasber C, Sheena E, Varney M, Newman-Tancredi A, Bishop C (2017) Characterizing the differential roles of striatal 5-HT1A auto- and hetero-receptors in the reduction of l-DOPA-induced dyskinesia. Exp Neurol 292:168–178CrossRefPubMedGoogle Scholar
  26. 26.
    McCreary AC, Varney MA, Newman-Tancredi A (2016) The novel 5-HT1A receptor agonist, NLX-112 reduces l-DOPA-induced abnormal involuntary movements in rat: a chronic administration study with microdialysis measurements. Neuropharmacology 105:651–660CrossRefPubMedGoogle Scholar
  27. 27.
    Pavese N, Evans AH, Tai YF, Hotton G, Brooks DJ, Lees AJ, Piccini P (2006) Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 67:1612–1617CrossRefPubMedGoogle Scholar
  28. 28.
    Assie MB, Lomenech H, Ravailhe V, Faucillon V, Newman-Tancredi A (2006) Rapid desensitization of somatodendritic 5-HT1A receptors by chronic administration of the high-efficacy 5-HT1A agonist, F13714: a microdialysis study in the rat. Br J Pharmacol 149:170–178CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Newman-Tancredi A (2011) Biased agonism at serotonin 5-HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. Neuropsychiatry 1:149–164CrossRefGoogle Scholar
  30. 30.
    Llado-Pelfort L, Assie MB, Newman-Tancredi A, Artigas F, Celada P (2010) Preferential in vivo action of F15599, a novel 5-HT1A receptor agonist, at postsynaptic 5-HT1A receptors. Br J Pharmacol 160:1929–1940CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Newman-Tancredi A, Martel JC, Assie MB, Buritova J, Lauressergues E, Cosi C, Heusler P, Bruins Slot L, Colpaert FC, Vacher B, Cussac D (2009) Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist. Br J Pharmacol 156:338–353CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huot P, Brotchie JM (2011) 5-HT(1A) receptor stimulation and l-DOPA-induced dyskinesia in Parkinson’s disease: bridging the gap between serotonergic and glutamatergic mechanisms. Exp Neurol 231:195–198CrossRefPubMedGoogle Scholar
  33. 33.
    Iderberg H, McCreary AC, Varney MA, Cenci MA, Newman-Tancredi A (2015) Activity of serotonin 5-HT receptor ‘biased agonists’ in rat models of Parkinson’s disease and l-DOPA-induced dyskinesia. Neuropharmacology 93C:52–67CrossRefGoogle Scholar
  34. 34.
    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, CambridgeGoogle Scholar
  35. 35.
    Jacobs BL (1976) An animal behavior model for studying central serotonergic synapses. Life Sci 19:777–785CrossRefPubMedGoogle Scholar
  36. 36.
    Moore NA, Rees G, Sanger G, Perrett L (1993) 5-HT1A-mediated lower lip retraction: effects of 5-HT1A agonists and antagonists. Pharmacol Biochem Behav 46:141–143CrossRefPubMedGoogle Scholar
  37. 37.
    Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in l-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10:631–634CrossRefPubMedGoogle Scholar
  38. 38.
    Nahimi A, Holtzermann M, Landau AM, Simonsen M, Jakobsen S, Alstrup AK, Vang K, Moller A, Wegener G, Gjedde A, Doudet DJ (2012) Serotonergic modulation of receptor occupancy in rats treated with l-DOPA after unilateral 6-OHDA lesioning. J Neurochem 120:806–817CrossRefPubMedGoogle Scholar
  39. 39.
    Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833CrossRefPubMedGoogle Scholar
  40. 40.
    Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M (2001) Activation of 5-HT(1A) but not 5-HT(1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered l-DOPA in the striatum with nigrostriatal denervation. J Neurochem 76:1346–1353CrossRefPubMedGoogle Scholar
  41. 41.
    Eskow KL, Dupre KB, Barnum CJ, Dickinson SO, Park JY, Bishop C (2009) The role of the dorsal raphe nucleus in the development, expression, and treatment of l-DOPA-induced dyskinesia in hemiparkinsonian rats. Synapse 63:610–620CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Polter AM, Li X (2010) 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal 22:1406–1412CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S, Ferraro L (2005) Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58:193–199CrossRefPubMedGoogle Scholar
  44. 44.
    Mignon LJ, Wolf WA (2005) 8-hydroxy-2-(di-n-propylamino)tetralin reduces striatal glutamate in an animal model of Parkinson’s disease. Neuroreport 16:699–703CrossRefPubMedGoogle Scholar
  45. 45.
    Dupre KB, Ostock CY, Eskow Jaunarajs KL, Button T, Savage LM, Wolf W, Bishop C (2011) Local modulation of striatal glutamate efflux by serotonin 1A receptor stimulation in dyskinetic, hemiparkinsonian rats. Exp Neurol 229:288–299CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ostock CY, Dupre KB, Jaunarajs KL, Walters H, George J, Krolewski D, Walker PD, Bishop C (2011) Role of the primary motor cortex in l-Dopa-induced dyskinesia and its modulation by 5-HT1A receptor stimulation. Neuropharmacology 61:753–760CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Celada P, Bortolozzi A, Artigas F (2013) Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs 27:703–716CrossRefPubMedGoogle Scholar
  48. 48.
    Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14:1100–1109CrossRefPubMedGoogle Scholar
  49. 49.
    Brys I, Halje P, Scheffer-Teixeira R, Varney M, Newman-Tancredi A, Petersson P (2018) Neurophysiological effects in cortico-basal ganglia-thalamic circuits of antidyskinetic treatment with 5-HT1A receptor biased agonists. Exp Neurol 302:155–168CrossRefPubMedGoogle Scholar
  50. 50.
    Marin C, Aguilar E, Rodriguez-Oroz MC, Bartoszyk GD, Obeso JA (2009) Local administration of sarizotan into the subthalamic nucleus attenuates levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Psychopharmacology 204:241–250CrossRefPubMedGoogle Scholar
  51. 51.
    Nelson AB, Kreitzer AC (2014) Reassessing models of basal ganglia function and dysfunction. Annu Rev Neurosci 37:117–135CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Isbister GK, Buckley NA (2005) The pathophysiology of serotonin toxicity in animals and humans: implications for diagnosis and treatment. Clin Neuropharmacol 28:205–214CrossRefPubMedGoogle Scholar
  53. 53.
    Green AR, Backus LI (1990) Animal models of serotonin behavior. Ann N Y Acad Sci 600:237–248 discussion 248 – 239CrossRefPubMedGoogle Scholar
  54. 54.
    Bijl D (2004) The serotonin syndrome. Neth J Med 62:309–313PubMedGoogle Scholar
  55. 55.
    Arvidsson LE, Hacksell U, Nilsson JL, Hjorth S, Carlsson A, Lindberg P, Sanchez D, Wikstrom H (1981) 8-Hydroxy-2-(di-n-propylamino)tetralin, a new centrally acting 5-hydroxytryptamine receptor agonist. J Med Chem 24:921–923CrossRefPubMedGoogle Scholar
  56. 56.
    Tricklebank MD, Forler C, Fozard JR (1984) The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 106:271–282CrossRefPubMedGoogle Scholar
  57. 57.
    Assie MB, Bardin L, Auclair AL, Carilla-Durand E, Depoortere R, Koek W, Kleven MS, Colpaert F, Vacher B, Newman-Tancredi A (2010) F15599, a highly selective post-synaptic 5-HT1A receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity. Int J Neuropsychopharmacol 13:1285–1298CrossRefPubMedGoogle Scholar
  58. 58.
    Berendsen HH, Bourgondien FG, Broekkamp CL (1994) Role of dorsal and median raphe nuclei in lower lip retraction in rats. Eur J Pharmacol 263:315–318CrossRefPubMedGoogle Scholar
  59. 59.
    Higgins GA, Elliott PJ (1991) Differential behavioural activation following intra-raphe infusion of 5-HT1A receptor agonists. Eur J Pharmacol 193:351–356CrossRefPubMedGoogle Scholar
  60. 60.
    Assié M-B, Ravailhe V, Benas C, Newman-Tancredi A (2008) Differential effects of 5-HT1A receptor agonists on extracellular levels of 5-HT in hippocampus and of dopamine in frontal cortex of freely moving rats. In: British Association for Psychopharmacology Summer Meeting. Harrogate, Poster ID 59Google Scholar
  61. 61.
    Becker G, Bolbos R, Costes N, Redoute J, Newman-Tancredi A, Zimmer L (2016) Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study. Sci Rep 6:26633CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neurolixis Inc.Dana PointUSA
  2. 2.Brains On-Line BVGroningenThe Netherlands
  3. 3.Preclinical Drug DevelopmentGrünenthal GmbHAachenGermany

Personalised recommendations