Neurochemical Research

, Volume 44, Issue 3, pp 703–713 | Cite as

Cannabidiol Reverses Deficits in Hippocampal LTP in a Model of Alzheimer’s Disease

  • Blathnaid Hughes
  • Caroline E. HerronEmail author
Original Paper


Here we demonstrate for the first time that cannabidiol (CBD) acts to protect synaptic plasticity in an in vitro model of Alzheimer’s disease (AD). The non-psycho active component of Cannabis sativa, CBD has previously been shown to protect against the neurotoxic effects of beta amyloid peptide (Aβ) in cell culture and cognitive behavioural models of neurodegeneration. Hippocampal long-term potentiation (LTP) is an activity dependent increase in synaptic efficacy often used to study cellular mechanisms related to memory. Here we show that acute application of soluble oligomeric beta amyloid peptide (Aβ1–42) associated with AD, attenuates LTP in the CA1 region of hippocampal slices from C57Bl/6 mice. Application of CBD alone did not alter LTP, however pre-treatment of slices with CBD rescued the Aβ1–42 mediated deficit in LTP. We found that the neuroprotective effects of CBD were not reversed by WAY100635, ZM241385 or AM251, demonstrating a lack of involvement of 5HT1A, adenosine (A2A) or Cannabinoid type 1 (CB1) receptors respectively. However in the presence of the PPARγ antagonist GW9662 the neuroprotective effect of CBD was prevented. Our data suggests that this major component of Cannabis sativa, which lacks psychoactivity may have therapeutic potential for the treatment of AD.


Cannabidiol Alzheimer’s disease Long-term potentiation PPARγ Beta amyloid peptide 5HT1A Adenosine A2A CB1


  1. 1.
    Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388CrossRefGoogle Scholar
  2. 2.
    Holtzman DM et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 97(6):2892–2897CrossRefGoogle Scholar
  3. 3.
    Mc Donald JM et al (2010) The presence of sodium dodecyl sulphate-stable Aβ dimers is strongly associated with Alzheimer-type dementia. Brain 133(5):1328–1341CrossRefGoogle Scholar
  4. 4.
    Enya M et al (1999) Appearance of sodium dodecyl sulfate-stable amyloid beta-protein (Aβ) dimer in the cortex during aging. Am J Pathol 154(1):271–279CrossRefGoogle Scholar
  5. 5.
    Roher AE et al (1996) Morphology and toxicity of Aβ-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem 271(34):20631–20635CrossRefGoogle Scholar
  6. 6.
    Vigo-Pelfrey C et al (1993) Characterization of beta-amyloid peptide from human cerebrospinal fluid. J Neurochem 61(5):1965–1968CrossRefGoogle Scholar
  7. 7.
    Bliss TV, Collingridge GL, Morris RG (2014) Synaptic plasticity in health and disease: introduction and overview. Philos Trans R Soc Lond B Biol Sci 369(1633):20130129CrossRefGoogle Scholar
  8. 8.
    Metais C et al (2014) Simvastatin treatment preserves synaptic plasticity in AβPPswe/PS1dE9 mice. J Alzheimers Dis 39(2):315–329CrossRefGoogle Scholar
  9. 9.
    Costello DA, O’Leary DM, Herron CE (2005) Agonists of peroxisome proliferator-activated receptor-gamma attenuate the Aβ-mediated impairment of LTP in the hippocampus in vitro. Neuropharmacology 49(3):359–366CrossRefGoogle Scholar
  10. 10.
    Lauren J et al (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132CrossRefGoogle Scholar
  11. 11.
    Freir DB et al (2011) Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat Commun 2:336CrossRefGoogle Scholar
  12. 12.
    Nicoll AJ et al (2013) Amyloid-beta nanotubes are associated with prion protein-dependent synaptotoxicity. Nat Commun 4:2416CrossRefGoogle Scholar
  13. 13.
    Cheng D et al (2014) Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1∆E9 mice. Psychopharmacology 231(15):3009–3017CrossRefGoogle Scholar
  14. 14.
    Iuvone T et al (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89(1):134–141CrossRefGoogle Scholar
  15. 15.
    Krishnan S, Cairns R, Howard R (2009) Cannabinoids for the treatment of dementia. Cochrane Database Syst Rev 2: CD007204Google Scholar
  16. 16.
    Booz GW (2011) Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 51(5):1054–1061CrossRefGoogle Scholar
  17. 17.
    Martin-Moreno AM et al (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol 79(6):964–973CrossRefGoogle Scholar
  18. 18.
    Esposito G et al (2006) Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci Lett 399(1–2):91–95CrossRefGoogle Scholar
  19. 19.
    Esposito G et al (2011) Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS ONE 6(12):e28668CrossRefGoogle Scholar
  20. 20.
    Laprairie RB et al (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172(20):4790–4805CrossRefGoogle Scholar
  21. 21.
    Vallee A et al (2017) Effects of cannabidiol interactions with Wnt/beta-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin (Shanghai) 49(10):853–866CrossRefGoogle Scholar
  22. 22.
    Ledgerwood CJ et al (2011) Cannabidiol inhibits synaptic transmission in rat hippocampal cultures and slices via multiple receptor pathways. Br J Pharmacol 162(1):286–294CrossRefGoogle Scholar
  23. 23.
    Zanelati TV et al (2010) Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br J Pharmacol 159(1):122–128CrossRefGoogle Scholar
  24. 24.
    Resstel LB et al (2009) 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol 156(1):181–188CrossRefGoogle Scholar
  25. 25.
    Campos AC, Guimaraes FS (2008) Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology 199(2):223–230CrossRefGoogle Scholar
  26. 26.
    Ribeiro A et al (2012) Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor. Eur J Pharmacol 678(1–3):78–85CrossRefGoogle Scholar
  27. 27.
    Liou GI et al (2008) Mediation of cannabidiol anti-inflammation in the retina by equilibrative nucleoside transporter and A2A adenosine receptor. Invest Ophthalmol Vis Sci 49(12):5526–5531CrossRefGoogle Scholar
  28. 28.
    O’Sullivan SE et al (2009) Time-dependent vascular actions of cannabidiol in the rat aorta. Eur J Pharmacol 612(1–3):61–68CrossRefGoogle Scholar
  29. 29.
    McPartland JM, Glass M, Pertwee RG (2007) Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: interspecies differences. Br J Pharmacol 152(5):583–593CrossRefGoogle Scholar
  30. 30.
    Thomas A et al (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150(5):613–623CrossRefGoogle Scholar
  31. 31.
    Bisogno T et al (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134(4):845–852CrossRefGoogle Scholar
  32. 32.
    Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci USA 103(20):7895–7900CrossRefGoogle Scholar
  33. 33.
    Forster EA et al (1995) A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol 281(1):81–88CrossRefGoogle Scholar
  34. 34.
    Dall’Igna OP et al (2003) Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138(7):1207–1209CrossRefGoogle Scholar
  35. 35.
    Leesnitzer LM et al (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41(21):6640–6650CrossRefGoogle Scholar
  36. 36.
    Ryan D et al (2009) Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 29(7):2053–2063CrossRefGoogle Scholar
  37. 37.
    Shankar GM et al (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875CrossRefGoogle Scholar
  38. 38.
    Pugliese AM, Passani MB, Corradetti R (1998) Effect of the selective 5-HT1A receptor antagonist WAY 100635 on the inhibition of produced by 5-HT in the CA1 region of rat hippocampal slices. Br J Pharmacol 124(1):93–100CrossRefGoogle Scholar
  39. 39.
    Thomas BF et al (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285(1):285–292Google Scholar
  40. 40.
    Hoffman AF et al (2010) Control of cannabinoid CB1 receptor function on glutamate axon terminals by endogenous adenosine acting at A1 receptors. J Neurosci 30(2):545–555CrossRefGoogle Scholar
  41. 41.
    Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: ∆9-tetrahydrocannabinol, cannabidiol and ∆9-tetrahydrocannabivarin. Br J Pharmacol 153(2):199–215CrossRefGoogle Scholar
  42. 42.
    Martinez-Pinilla E et al (2017) Binding and signaling studies disclose a potential allosteric site for cannabidiol in cannabinoid CB2 receptors. Front Pharmacol 8:744CrossRefGoogle Scholar
  43. 43.
    de Mendonça A, Ribeiro JA (2001) Adenosine and synaptic plasticity. Drug Dev Res 52(1–2):283–290CrossRefGoogle Scholar
  44. 44.
    Rombo DM et al (2015) Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus. Hippocampus 25(5):566–580CrossRefGoogle Scholar
  45. 45.
    Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25(1):33–39CrossRefGoogle Scholar
  46. 46.
    Castillo A et al (2010) The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB2 and adenosine receptors. Neurobiol Dis 37(2):434–440CrossRefGoogle Scholar
  47. 47.
    Slanina KA, Roberto M, Schweitzer P (2005) Endocannabinoids restrict hippocampal long-term potentiation via CB1. Neuropharmacology 49(5):660–668CrossRefGoogle Scholar
  48. 48.
    Karl T et al (2012) The therapeutic potential of the endocannabinoid system for Alzheimer’s disease. Expert Opin Ther Targets 16(4):407–420CrossRefGoogle Scholar
  49. 49.
    Mazzola C, Micale V, Drago F (2003) Amnesia induced by beta-amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur J Pharmacol 477(3):219–225CrossRefGoogle Scholar
  50. 50.
    Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771(8):1031–1045CrossRefGoogle Scholar
  51. 51.
    Bouhlel MA et al (2007) PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6(2):137–143CrossRefGoogle Scholar
  52. 52.
    Jo J et al (2011) Aβ(1–42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat Neurosci 14(5):545–547CrossRefGoogle Scholar
  53. 53.
    Peineau S et al (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53(5):703–717CrossRefGoogle Scholar
  54. 54.
    da Silva VK et al (2014) Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Mol Neurobiol 49(1):222–233CrossRefGoogle Scholar
  55. 55.
    Fagherazzi EV et al (2012) Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology 219(4):1133–1140CrossRefGoogle Scholar
  56. 56.
    Esposito G et al (2006) The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. J Mol Med (Berl) 84(3):253–258CrossRefGoogle Scholar
  57. 57.
    Cabrero A, Laguna JC, Vazquez M (2002) Peroxisome proliferator-activated receptors and the control of inflammation. Curr Drug Targets Inflamm Allergy 1(3):243–248CrossRefGoogle Scholar
  58. 58.
    Inestrosa NC et al (2005) Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304(1):91–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Biomolecular and Biomedical Sciences, Conway InstituteUniversity College DublinDublin 4Ireland

Personalised recommendations