Skip to main content

Advertisement

Log in

Knockout of Amyloid β Protein Precursor (APP) Expression Alters Synaptogenesis, Neurite Branching and Axonal Morphology of Hippocampal Neurons

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The function of the β-A4 amyloid protein precursor (APP) of Alzheimer’s disease (AD) remains unclear. APP has a number of putative roles in neuronal differentiation, survival, synaptogenesis and cell adhesion. In this study, we examined the development of axons, dendrites and synapses in cultures of hippocampus neutrons derived from APP knockout (KO) mice. We report that loss of APP function reduces the branching of cultured hippocampal neurons, resulting in reduced synapse formation. Using a compartmentalised culture approach, we found reduced axonal outgrowth in cultured hippocampal neurons and we also identified abnormal growth characteristics of isolated hippocampal neuron axons. Although APP has previously been suggested to play an important role in promoting cell adhesion, we surprisingly found that APPKO hippocampal neurons adhered more strongly to a poly-l-lysine substrate and their neurites displayed an increased density of focal adhesion puncta. The findings suggest that the function of APP has an important role in both dendritic and axonal growth and that endogenous APP may regulate substrate adhesion of hippocampal neurons. The results may explain neuronal and synaptic morphological abnormalities in APPKO mice and the presence of abnormal APP expression in dystrophic neurites around amyloid deposits in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AICD:

Amyloid intracellular domain

APP:

Amyloid β protein precursor

DIV:

Days in vitro

FAK:

Focal adhesion kinase

KO:

Knock-out

MAP2:

Microtubule-associated protein 2

References

  1. Nalivaeva NN, Turner AJ (2013) The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 587:2046–2054

    Article  CAS  PubMed  Google Scholar 

  2. Dawkins E, Small DH (2014) Insights into the physiological function of the beta-amyloid precursor protein: beyond Alzheimer’s disease. J Neurochem 129:756–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Southam KA, Stennard FA, Small DH (2016) App. In: Choi S (ed) Encyclopedia of signaling molecules. Springer, New York, pp 367–373

    Google Scholar 

  4. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  Google Scholar 

  5. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  CAS  PubMed  Google Scholar 

  6. Patterson D, Gardiner K, Kao FT, Tanzi R, Watkins P, Gusella JF (1988) Mapping of the gene encoding the beta-amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21. Proc Natl Acad Sci USA 85:8266–8270

    Article  CAS  PubMed  Google Scholar 

  7. Lyckman AW, Confaloni AM, Thinakaran G, Sisodia SS, Moya KL (1998) Post-translational processing and turnover kinetics of presynaptically targeted amyloid precursor superfamily proteins in the central nervous system. J Biol Chem 273:11100–11106

    Article  CAS  PubMed  Google Scholar 

  8. Small DH, Nurcombe V, Reed G, Clarris H, Moir R, Beyreuther K, Masters CL (1994) A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. J Neurosci 14:2117–2127

    Article  CAS  PubMed  Google Scholar 

  9. Sosa LJ, Caceres A, Dupraz S, Oksdath M, Quiroga S, Lorenzo A (2017) The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. J Neurochem 143:11–29

    Article  CAS  PubMed  Google Scholar 

  10. Williamson TG, Mok SS, Henry A, Cappai R, Lander AD, Nurcombe V, Beyreuther K, Masters CL, Small DH (1996) Secreted glypican binds to the amyloid precursor protein of Alzheimer’s disease (APP) and inhibits APP-induced neurite outgrowth. J Biol Chem 271:31215–31221

    Article  CAS  PubMed  Google Scholar 

  11. Chen KP, Dou F (2012) Selective interaction of amyloid precursor protein with different isoforms of neural cell adhesion molecule. J Mol Neurosci 46:203–209

    Article  CAS  PubMed  Google Scholar 

  12. Zuko A, Bouyain S, van der Zwaag B, Burbach JP (2011) Contactins: structural aspects in relation to developmental functions in brain disease. Adv Protein Chem Struct Biol 84:143–180

    Article  CAS  PubMed  Google Scholar 

  13. Bukhari H, Glotzbach A, Kolbe K, Leonhardt G, Loosse C, Muller T (2017) Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease. Prog Neurobiol 156:189–213

    Article  CAS  PubMed  Google Scholar 

  14. Kerr ML, Small DH (2005) Cytoplasmic domain of the beta-amyloid protein precursor of Alzheimer’s disease: function, regulation of proteolysis, and implications for drug development. J Neurosci Res 80:151–159

    Article  CAS  PubMed  Google Scholar 

  15. Small DH, Nurcombe V, Moir R, Michaelson S, Monard D, Beyreuther K, Masters CL (1992) Association and release of the amyloid protein precursor of Alzheimer’s disease from chick brain extracellular matrix. J Neurosci 12:4143–4150

    Article  CAS  PubMed  Google Scholar 

  16. Clarris HJ, Key B, Beyreuther K, Masters CL, Small DH (1995) Expression of the amyloid protein precursor of Alzheimer’s disease in the developing rat olfactory system. Brain Res Dev Brain Res 88:87–95

    Article  CAS  PubMed  Google Scholar 

  17. Del Turco D, Paul MH, Schlaudraff J, Hick M, Endres K, Muller UC, Deller T (2016) Region-specific differences in amyloid precursor protein expression in the mouse hippocampus. Front Mol Neurosci 9:134

    PubMed  PubMed Central  Google Scholar 

  18. Uryu K, Chen XH, Martinez D, Browne KD, Johnson VE, Graham DI, Lee VM, Trojanowski JQ, Smith DH (2007) Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol 208:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tran HT, LaFerla FM, Holtzman DM, Brody DL (2011) Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-beta accumulation and independently accelerates the development of tau abnormalities. J Neurosci 31:9513–9525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith DH, Chen XH, Iwata A, Graham DI (2003) Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg 98:1072–1077

    Article  CAS  PubMed  Google Scholar 

  21. Hu Y, Hung AC, Cui H, Dawkins E, Bolos M, Foa L, Young KM, Small DH (2013) Role of cystatin C in amyloid precursor protein-induced proliferation of neural stem/progenitor cells. J Biol Chem 288:18853–18862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bolos M, Hu Y, Young KM, Foa L, Small DH (2014) Neurogenin 2 mediates amyloid-beta precursor protein-stimulated neurogenesis. J Biol Chem 289:31253–31261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tyan SH, Shih AY, Walsh JJ, Maruyama H, Sarsoza F, Ku L, Eggert S, Hof PR, Koo EH, Dickstein DL (2012) Amyloid precursor protein (APP) regulates synaptic structure and function. Mol Cell Neurosci 51:43–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steinbach JP, Muller U, Leist M, Li ZW, Nicotera P, Aguzzi A (1998) Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. Cell Death Differ 5:858–866

    Article  CAS  PubMed  Google Scholar 

  25. Dawson GR, Seabrook GR, Zheng H, Smith DW, Graham S, O’Dowd G, Bowery BJ, Boyce S, Trumbauer ME, Chen HY, Van der Ploeg LH, Sirinathsinghji DJ (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience 90:1–13

    Article  CAS  PubMed  Google Scholar 

  26. Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci 2:271–276

    Article  CAS  PubMed  Google Scholar 

  27. Cline HT (2001) Dendritic arbor development and synaptogenesis. Curr Opin Neurobiol 11:118–126

    Article  CAS  PubMed  Google Scholar 

  28. Hosie KA, King AE, Blizzard CA, Vickers JC, Dickson TC (2012) Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model. ASN Neuro 4:47–57

    Article  CAS  Google Scholar 

  29. O’Mara A, King AE, Vickers JC, Kirkcaldie MT (2017) ImageSURF: an ImageJ plugin for batch pixel-based image segmentation using random forests. J Open Res Software. https://doi.org/10.5334/jors.172

    Article  Google Scholar 

  30. Kreshuk A, Straehle CN, Sommer C, Koethe U, Cantoni M, Knott G, Hamprecht FA (2011) Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS ONE 6:e24899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stuart KE, King AE, Fernandez-Martos CM, Dittmann J, Summers MJ, Vickers JC (2016) Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of Abeta-associated pathology and positively influences synaptic and cognitive health in healthy ageing. J Comp Neurol. https://doi.org/10.1002/cne.24156

    Article  Google Scholar 

  32. Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H, Unser M (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58:167–176

    Article  CAS  PubMed  Google Scholar 

  33. Ivanov A, Esclapez M, Pellegrino C, Shirao T, Ferhat L (2009) Drebrin A regulates dendritic spine plasticity and synaptic function in mature cultured hippocampal neurons. J Cell Sci 122:524–534

    Article  CAS  PubMed  Google Scholar 

  34. Banker GA, Cowan WM (1979) Further observations on hippocampal neurons in dispersed cell culture. J Comp Neurol 187:469–493

    Article  CAS  PubMed  Google Scholar 

  35. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Southam KA, King AE, Blizzard CA, McCormack GH, Dickson TC (2013) Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. J Neurosci Methods 218:164–169

    Article  PubMed  Google Scholar 

  37. Missaire M, Hindges R (2015) The role of cell adhesion molecules in visual circuit formation: from neurite outgrowth to maps and synaptic specificity. Dev Neurobiol 75:569–583

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eva R, Fawcett J (2014) Integrin signalling and traffic during axon growth and regeneration. Curr Opin Neurobiol 27:179–185

    Article  CAS  PubMed  Google Scholar 

  39. Pollerberg GE, Thelen K, Theiss MO, Hochlehnert BC (2013) The role of cell adhesion molecules for navigating axons: density matters. Mech Dev 130:359–372

    Article  CAS  PubMed  Google Scholar 

  40. Clarris HJ, Nurcombe V, Small DH, Beyreuther K, Masters CL (1994) Secretion of nerve growth factor from septum stimulates neurite outgrowth and release of the amyloid protein precursor of Alzheimer’s disease from hippocampal explants. J Neurosci Res 38:248–258

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Bolos M, Clark R, Cullen CL, Southam KA, Foa L, Dickson TC, Young KM (2016) Amyloid beta precursor protein regulates neuron survival and maturation in the adult mouse brain. Mol Cell Neurosci 77:21–33

    Article  CAS  PubMed  Google Scholar 

  42. Jin LW, Ninomiya H, Roch JM, Schubert D, Masliah E, Otero DA, Saitoh T (1994) Peptides containing the RERMS sequence of amyloid beta/A4 protein precursor bind cell surface and promote neurite extension. J Neurosci 14:5461–5470

    Article  CAS  PubMed  Google Scholar 

  43. Kibbey MC, Jucker M, Weeks BS, Neve RL, Van Nostrand WE, Kleinman HK (1993) Beta-amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin. Proc Natl Acad Sci USA 90:10150–10153

    Article  CAS  PubMed  Google Scholar 

  44. Milward EA, Papadopoulos R, Fuller SJ, Moir RD, Small D, Beyreuther K, Masters CL (1992) The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9:129–137

    Article  CAS  PubMed  Google Scholar 

  45. Perez RG, Zheng H, Van der Ploeg LH, Koo EH (1997) The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 17:9407–9414

    Article  CAS  PubMed  Google Scholar 

  46. Rossjohn J, Cappai R, Feil SC, Henry A, McKinstry WJ, Galatis D, Hesse L, Multhaup G, Beyreuther K, Masters CL, Parker MW (1999) Crystal structure of the N-terminal, growth factor-like domain of Alzheimer amyloid precursor protein. Nat Struct Biol 6:327–331

    Article  CAS  PubMed  Google Scholar 

  47. Corrigan F, Thornton E, Roisman LC, Leonard AV, Vink R, Blumbergs PC, van den Heuvel C, Cappai R (2014) The neuroprotective activity of the amyloid precursor protein against traumatic brain injury is mediated via the heparin binding site in residues 96-110. J Neurochem 128:196–204

    Article  CAS  PubMed  Google Scholar 

  48. Zheng H, Jiang M, Trumbauer ME, Sirinathsinghji DJ, Hopkins R, Smith DW, Heavens RP, Dawson GR, Boyce S, Conner MW, Stevens KA, Slunt HH, Sisoda SS, Chen HY, Van der Ploeg LH (1995) Beta-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity. Cell 81:525–531

    Article  CAS  PubMed  Google Scholar 

  49. Harper SJ, Bilsland JG, Shearman MS, Zheng H, Van der Ploeg L, Sirinathsinghji DJ (1998) Mouse cortical neurones lacking APP show normal neurite outgrowth and survival responses in vitro. Neuroreport 9:3053–3058

    Article  CAS  PubMed  Google Scholar 

  50. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    Article  CAS  PubMed  Google Scholar 

  51. Jankowsky JL, Zheng H (2017) Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegener 12:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rohan de Silva HA, Jen A, Wickenden C, Jen LS, Wilkinson SL, Patel AJ (1997) Cell-specific expression of beta-amyloid precursor protein isoform mRNAs and proteins in neurons and astrocytes. Brain Res Mol Brain Res 47:147–156

    Article  CAS  PubMed  Google Scholar 

  53. LeBlanc AC, Xue R, Gambetti P (1996) Amyloid precursor protein metabolism in primary cell cultures of neurons, astrocytes, and microglia. J Neurochem 66:2300–2310

    Article  CAS  PubMed  Google Scholar 

  54. Postuma RB, He W, Nunan J, Beyreuther K, Masters CL, Barrow CJ, Small DH (2000) Substrate-bound beta-amyloid peptides inhibit cell adhesion and neurite outgrowth in primary neuronal cultures. J Neurochem 74:1122–1130

    Article  CAS  PubMed  Google Scholar 

  55. Mok SS, Turner BJ, Beyreuther K, Masters CL, Barrow CJ, Small DH (2002) Toxicity of substrate-bound amyloid peptides on vascular smooth muscle cells is enhanced by homocysteine. Eur J Biochem 269:3014–3022

    Article  CAS  PubMed  Google Scholar 

  56. Breen KC, Bruce M, Anderton BH (1991) Beta amyloid precursor protein mediates neuronal cell-cell and cell-surface adhesion. J Neurosci Res 28:90–100

    Article  CAS  PubMed  Google Scholar 

  57. Clarris HJ, Cappai R, Heffernan D, Beyreuther K, Masters CL, Small DH (1997) Identification of heparin-binding domains in the amyloid precursor protein of Alzheimer’s disease by deletion mutagenesis and peptide mapping. J Neurochem 68:1164–1172

    Article  CAS  PubMed  Google Scholar 

  58. Cochran E, Bacci B, Chen Y, Patton A, Gambetti P, Autilio-Gambetti L (1991) Amyloid precursor protein and ubiquitin immunoreactivity in dystrophic axons is not unique to Alzheimer’s disease. Am J Pathol 139:485–489

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci USA 88:7552–7556

    Article  CAS  PubMed  Google Scholar 

  60. Joachim C, Games D, Morris J, Ward P, Frenkel D, Selkoe D (1991) Antibodies to non-beta regions of the beta-amyloid precursor protein detect a subset of senile plaques. Am J Pathol 138:373–384

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shoji M, Hirai S, Yamaguchi H, Harigaya Y, Kawarabayashi T (1990) Amyloid beta-protein precursor accumulates in dystrophic neurites of senile plaques in Alzheimer-type dementia. Brain Res 512:164–168

    Article  CAS  PubMed  Google Scholar 

  62. Yoon SY, Choi JU, Cho MH, Yang KM, Ha H, Chung IJ, Cho GS, Kim DH (2013) Alpha-secretase cleaved amyloid precursor protein (APP) accumulates in cholinergic dystrophic neurites in normal, aged hippocampus. Neuropathol Appl Neurobiol 39:800–816

    Article  CAS  PubMed  Google Scholar 

  63. Sadleir KR, Kandalepas PC, Buggia-Prevot V, Nicholson DA, Thinakaran G, Vassar R (2016) Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Abeta generation in Alzheimer’s disease. Acta Neuropathol 132:235–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Small DH, Mok SS, Bornstein JC (2001) Alzheimer’s disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2:595–598

    Article  CAS  PubMed  Google Scholar 

  65. Gentleman D (1994) Growth and repair after injury of the central nervous system: yesterday, today and tomorrow. Injury 25:571–576

    Article  CAS  PubMed  Google Scholar 

  66. Kawarabayashi T, Shoji M, Harigaya Y, Yamaguchi H, Hirai S (1991) Expression of APP in the early stage of brain damage. Brain Res 563:334–338

    Article  CAS  PubMed  Google Scholar 

  67. Siman R, Card JP, Nelson RB, Davis LG (1989) Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron 3:275–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Health and Medical Research Council of Australia (NHMRC) to DHS, and the University of Tasmania Research Enhancement Grants Scheme (REGS) and an Alzheimer’s Australia Dementia Research Foundation (AADRF) postdoctoral fellowship to KAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Southam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Southam, K.A., Stennard, F., Pavez, C. et al. Knockout of Amyloid β Protein Precursor (APP) Expression Alters Synaptogenesis, Neurite Branching and Axonal Morphology of Hippocampal Neurons. Neurochem Res 44, 1346–1355 (2019). https://doi.org/10.1007/s11064-018-2512-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2512-0

Keywords

Navigation