Advertisement

Neurochemical Research

, Volume 43, Issue 5, pp 1020–1034 | Cite as

Voltage Gated Potassium Channel Kv1.3 Is Upregulated on Activated Astrocytes in Experimental Autoimmune Encephalomyelitis

  • Iva Bozic
  • Katarina Tesovic
  • Danijela Laketa
  • Marija Adzic
  • Marija Jakovljevic
  • Ivana Bjelobaba
  • Danijela Savic
  • Nadezda Nedeljkovic
  • Sanja Pekovic
  • Irena Lavrnja
Original Paper

Abstract

Kv1.3 is a voltage gated potassium channel that has been implicated in pathophysiology of multiple sclerosis (MS). In the present study we investigated temporal and cellular expression pattern of this channel in the lumbar part of spinal cords of animals with experimental autoimmune encephalomyelitis (EAE), animal model of MS. EAE was actively induced in female Dark Agouti rats. Expression of Kv1.3 was analyzed at different time points of disease progression, at the onset, peak and end of EAE. We here show that Kv1.3 increased by several folds at the peak of EAE at both gene and protein level. Double immunofluorescence analyses demonstrated localization of Kv1.3 on activated microglia, macrophages, and reactive astrocytes around inflammatory lesions. In vitro experiments showed that pharmacological block of Kv1.3 in activated astrocytes suppresses the expression of proinflammatory mediators, suggesting a role of this channel in inflammation. Our results support the hypothesis that Kv1.3 may be a therapeutic target of interest for MS and add astrocytes to the list of cells whose activation would be suppressed by inhibiting Kv1.3 in inflammatory conditions.

Keywords

Experimental autoimmune encephalomyelitis Voltage gated potassium channel Kv1.3 Astrocytes Agitoxin-2 Neuroinflammation 

Notes

Acknowledgements

Some data sets included in this manuscript were presented as an abstract at the 4th Meeting of COST Action BM1406: Ion Channels and Immune Response toward a global understanding of immune cell physiology and for new therapeutic approaches (IONCHAN-IMMUNRESPON).

Funding

This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant III 41014.

Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflict of interest regarding the publication of this paper.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Ethical Committee for the Use of Laboratory Animals of Institute for Biological Research “Sinisa Stankovic” (Belgrade, Serbia), in compliance with EEC Directive (2010/63/EU) on the protection of animals used for experimental and other scientific purposes.

References

  1. 1.
    Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558.  https://doi.org/10.1038/nri3871 CrossRefPubMedGoogle Scholar
  2. 2.
    Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128(2):191–213.  https://doi.org/10.1007/s00401-014-1310-2 CrossRefPubMedGoogle Scholar
  3. 3.
    Duffy SS, Lees JG, Moalem-Taylor G (2014) The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Multiple Scler Int 2014:285245.  https://doi.org/10.1155/2014/285245 Google Scholar
  4. 4.
    Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55(4):458–468.  https://doi.org/10.1002/ana.20016 CrossRefPubMedGoogle Scholar
  5. 5.
    Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81(3):374–389.  https://doi.org/10.1002/jnr.20488 CrossRefPubMedGoogle Scholar
  6. 6.
    Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152.  https://doi.org/10.1038/nm1177 CrossRefPubMedGoogle Scholar
  7. 7.
    Nair A, Frederick TJ, Miller SD (2008) Astrocytes in multiple sclerosis: a product of their environment. Cell Mol Life Sci 65(17):2702–2720.  https://doi.org/10.1007/s00018-008-8059-5 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brosnan CF, Raine CS (2013) The astrocyte in multiple sclerosis revisited. Glia 61(4):453–465.  https://doi.org/10.1002/glia.22443 CrossRefPubMedGoogle Scholar
  9. 9.
    Correale J, Farez MF (2015) The role of astrocytes in multiple sclerosis progression. Front Neurol 6:180.  https://doi.org/10.3389/fneur.2015.00180 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ehling P, Bittner S, Budde T, Wiendl H, Meuth SG (2011) Ion channels in autoimmune neurodegeneration. FEBS Lett 585(23):3836–3842.  https://doi.org/10.1016/j.febslet.2011.03.065 CrossRefPubMedGoogle Scholar
  11. 11.
    Rangaraju S, Chi V, Pennington MW, Chandy KG (2009) Kv1.3 potassium channels as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 13(8):909–924.  https://doi.org/10.1517/14728220903018957 CrossRefPubMedGoogle Scholar
  12. 12.
    Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8(12):982–1001.  https://doi.org/10.1038/nrd2983 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG (2003) The voltage-gated Kv1.3 K+ channel in effector memory T cells as new target for MS. J Clin Invest 111(11):1703–1713.  https://doi.org/10.1172/jci16921 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Panyi G, Vamosi G, Bacso Z, Bagdany M, Bodnar A, Varga Z, Gaspar R, Matyus L, Damjanovich S (2004) Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci USA 101(5):1285–1290.  https://doi.org/10.1073/pnas.0307421100 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rus H, Pardo CA, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen KM, Allie R, Guo L, Wulff H, Beeton C, Judge SI, Kerr DA, Knaus HG, Chandy KG, Calabresi PA (2005) The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci USA 102(31):11094–11099.  https://doi.org/10.1073/pnas.0501770102 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wulff H, Knaus HG, Pennington M, Chandy KG (2004) K+ channel expression during B Cell differentiation: implications for immunomodulation and autoimmunity. J Immunol 173(2):776–786.  https://doi.org/10.4049/jimmunol.173.2.776 CrossRefPubMedGoogle Scholar
  17. 17.
    de la Cruz A, Vera-Zambrano A, Peraza DA, Valenzuela C, Zapata JM, Perez-Chacon G, Gonzalez T (2017) Fludarabine inhibits KV1.3 currents in human B lymphocytes. Front Pharmacol 8:177.  https://doi.org/10.3389/fphar.2017.00177 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Vicente R, Escalada A, Coma M, Fuster G, Sanchez-Tillo E, Lopez-Iglesias C, Soler C, Solsona C, Celada A, Felipe A (2003) Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J Biol Chem 278(47):46307–46320.  https://doi.org/10.1074/jbc.M304388200 CrossRefPubMedGoogle Scholar
  19. 19.
    Villalonga N, Escalada A, Vicente R, Sanchez-Tillo E, Celada A, Solsona C, Felipe A (2007) Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem Biophys Res Commun 352(4):913–918.  https://doi.org/10.1016/j.bbrc.2006.11.120 CrossRefPubMedGoogle Scholar
  20. 20.
    Mullen KM, Rozycka M, Rus H, Hu L, Cudrici C, Zafranskaia E, Pennington MW, Johns DC, Judge SI, Calabresi PA (2006) Potassium channels Kv1.3 and Kv1.5 are expressed on blood-derived dendritic cells in the central nervous system. Ann Neurol 60(1):118–127.  https://doi.org/10.1002/ana.20884 CrossRefPubMedGoogle Scholar
  21. 21.
    Matzner N, Zemtsova IM, Xuan NT, Duszenko M, Shumilina E, Lang F (2008) Ion channels modulating mouse dendritic cell functions. J Immunol 181(10):6803–6809.  https://doi.org/10.4049/jimmunol.181.10.6803 CrossRefPubMedGoogle Scholar
  22. 22.
    Khanna R, Roy L, Zhu X, Schlichter LC (2001) K+ channels and the microglial respiratory burst. Am J Physiol Cell Physiol 280(4):C796–C806CrossRefGoogle Scholar
  23. 23.
    Fordyce CB, Jagasia R, Zhu X, Schlichter LC (2005) Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 25(31):7139–7149.  https://doi.org/10.1523/JNEUROSCI.1251-05.2005 CrossRefPubMedGoogle Scholar
  24. 24.
    Rangaraju S, Gearing M, Jin LW, Levey A (2015) Potassium channel Kv1.3 is highly expressed by microglia in human Alzheimer’s disease. J Alzheimer’s Dis 44(3):797–808.  https://doi.org/10.3233/JAD-141704 Google Scholar
  25. 25.
    Veh RW, Lichtinghagen R, Sewing S, Wunder F, Grumbach IM, Pongs O (1995) Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur J Neurosci 7(11):2189–2205CrossRefPubMedGoogle Scholar
  26. 26.
    Ramirez-Navarro A, Glazebrook PA, Kane-Sutton M, Padro C, Kline DD, Kunze DL (2011) Kv1.3 channels regulate synaptic transmission in the nucleus of solitary tract. J Neurophysiol 105(6):2772–2780.  https://doi.org/10.1152/jn.00494.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vicente R, Escalada A, Villalonga N, Texido L, Roura-Ferrer M, Martin-Satue M, Lopez-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem 281(49):37675–37685.  https://doi.org/10.1074/jbc.M605617200 CrossRefPubMedGoogle Scholar
  28. 28.
    Chung I, Zelivyanskaya M, Gendelman HE (2002) Mononuclear phagocyte biophysiology influences brain transendothelial and tissue migration: implication for HIV-1-associated dementia. J Neuroimmunol 122(1–2):40–54CrossRefPubMedGoogle Scholar
  29. 29.
    Stebbing MJ, Cottee JM, Rana I (2015) The role of ion channels in microglial activation and proliferation—a complex interplay between ligand-gated ion channels, K(+) channels, and intracellular Ca(2+.). Front Immunol 6:497.  https://doi.org/10.3389/fimmu.2015.00497 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kotecha SA, Schlichter LC (1999) A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J Neurosci 19(24):10680–10693CrossRefPubMedGoogle Scholar
  31. 31.
    Nutile-McMenemy N, Elfenbein A, Deleo JA (2007) Minocycline decreases in vitro microglial motility, beta1-integrin, and Kv1.3 channel expression. J Neurochem 103(5):2035–2046.  https://doi.org/10.1111/j.1471-4159.2007.04889.x CrossRefPubMedGoogle Scholar
  32. 32.
    Charolidi N, Schilling T, Eder C (2015) Microglial Kv1.3 channels and P2Y12 receptors differentially regulate cytokine and chemokine release from brain slices of young adult and aged mice. PLoS ONE 10(5):e0128463.  https://doi.org/10.1371/journal.pone.0128463 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Huang J, Han S, Sun Q, Zhao Y, Liu J, Yuan X, Mao W, Peng B, Liu W, Yin J, He X (2017) Kv1.3 channel blocker (ImKTx88) maintains blood-brain barrier in experimental autoimmune encephalomyelitis. Cell Biosci 7:31.  https://doi.org/10.1186/s13578-017-0158-2 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, Andrews BS, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 103(46):17414–17419.  https://doi.org/10.1073/pnas.0605136103 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lam J, Wulff H (2011) The lymphocyte potassium channels Kv1.3 and KCa3.1 as targets for immunosuppression. Drug Dev Res 72(7):573–584.  https://doi.org/10.1002/ddr.20467 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Richner M, Jager SB, Siupka P, Vaegter CB (2017) Hydraulic extrusion of the spinal cord and isolation of dorsal root ganglia in rodents. J Vis Exp.  https://doi.org/10.3791/55226 PubMedPubMedCentralGoogle Scholar
  37. 37.
    Lavrnja I, Laketa D, Savic D, Bozic I, Bjelobaba I, Pekovic S, Nedeljkovic N (2015) Expression of a second ecto-5′-nucleotidase variant besides the usual protein in symptomatic phase of experimental autoimmune encephalomyelitis. J Mol Neurosci 55(4):898–911.  https://doi.org/10.1007/s12031-014-0445-x CrossRefPubMedGoogle Scholar
  38. 38.
    Hewitt SM, Baskin DG, Frevert CW, Stahl WL, Rosa-Molinar E (2014) Controls for immunohistochemistry: the histochemical society’s standards of practice for validation of immunohistochemical assays. J Histochem Cytochem 62(10):693–697.  https://doi.org/10.1369/0022155414545224 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Burry RW (2011) Controls for immunocytochemistry: an update. J Histochem Cytochem 59(1):6–12.  https://doi.org/10.1369/jhc.2010.956920 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jakovljevic M, Lavrnja I, Bozic I, Savic D, Bjelobaba I, Pekovic S, Sevigny J, Nedeljkovic N, Laketa D (2017) Down-regulation of NTPDase2 and ADP-sensitive P2 purinoceptors correlate with severity of symptoms during experimental autoimmune encephalomyelitis. Front Cell Neurosci 11:333.  https://doi.org/10.3389/fncel.2017.00333 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Parker KK, Norenberg MD, Vernadakis A (1980) “Transdifferentiation” of C6 glial cells in culture. Science 208(4440):179–181CrossRefPubMedGoogle Scholar
  42. 42.
    Quincozes-Santos A, Bobermin LD, Latini A, Wajner M, Souza DO, Goncalves CA, Gottfried C (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS ONE 8(5):e64372.  https://doi.org/10.1371/journal.pone.0064372 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nardin P, Tramontina F, Leite MC, Tramontina AC, Quincozes-Santos A, de Almeida LM, Battastini AM, Gottfried C, Goncalves CA (2007) S100B content and secretion decrease in astrocytes cultured in high-glucose medium. Neurochem Int 50(5):774–782.  https://doi.org/10.1016/j.neuint.2007.01.013 CrossRefPubMedGoogle Scholar
  44. 44.
    Loureiro SO, Heimfarth L, de Lima BO, Leite MC, Guerra MC, Goncalves CA, Pessoa-Pureur R (2012) Dual action of chronic ethanol treatment on LPS-induced response in C6 glioma cells. J Neuroimmunol 249(1–2):8–15.  https://doi.org/10.1016/j.jneuroim.2012.04.004 CrossRefPubMedGoogle Scholar
  45. 45.
    Suk K, Lee J, Hur J, Kim YS, Lee M, Cha S, Yeou Kim S, Kim H (2001) Activation-induced cell death of rat astrocytes. Brain Res 900(2):342–347CrossRefPubMedGoogle Scholar
  46. 46.
    Do H, Pyo S, Sohn EH (2010) Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and depends on up-regulation of scavenger receptor B1 expression in TNF-alpha- and IFN-gamma-stimulated C6 glioma cells. J Nutr Biochem 21(8):671–679.  https://doi.org/10.1016/j.jnutbio.2009.03.013 CrossRefPubMedGoogle Scholar
  47. 47.
    Beeton C, Barbaria J, Giraud P, Devaux J, Benoliel AM, Gola M, Sabatier JM, Bernard D, Crest M, Beraud E (2001) Selective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol 166(2):936–944.  https://doi.org/10.4049/jimmunol.166.2.936 CrossRefPubMedGoogle Scholar
  48. 48.
    Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Beraud E (2001) Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci USA 98(24):13942–13947.  https://doi.org/10.1073/pnas.241497298 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen CY, Gutman GA, Chandy KG (2005) Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol 67(4):1369–1381.  https://doi.org/10.1124/mol.104.008193 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Judge SI, Yeh JZ, Mannie MD, Pope Seifert L, Paterson PY (1997) Potassium channel blockers inhibit adoptive transfer of experimental allergic encephalomyelitis by myelin-basic-protein-stimulated rat T lymphocytes. J Biomed Sci 4(4):169–178CrossRefPubMedGoogle Scholar
  51. 51.
    Matheu MP, Beeton C, Garcia A, Chi V, Rangaraju S, Safrina O, Monaghan K, Uemura MI, Li D, Pal S, de la Maza LM, Monuki E, Flugel A, Pennington MW, Parker I, Chandy KG, Cahalan MD (2008) Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 29(4):602–614.  https://doi.org/10.1016/j.immuni.2008.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gocke AR, Lebson LA, Grishkan IV, Hu L, Nguyen HM, Whartenby KA, Chandy KG, Calabresi PA (2012) Kv1.3 deletion biases T cells toward an immunoregulatory phenotype and renders mice resistant to autoimmune encephalomyelitis. J Immunol 188(12):5877–5886.  https://doi.org/10.4049/jimmunol.1103095 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Utsunomiya I, Yoshihashi E, Tanabe S, Nakatani Y, Ikejima H, Miyatake T, Hoshi K, Taguchi K (2008) Expression and localization of Kv1 potassium channels in rat dorsal and ventral spinal roots. Exp Neurol 210(1):51–58.  https://doi.org/10.1016/j.expneurol.2007.09.032 CrossRefPubMedGoogle Scholar
  54. 54.
    Vicente R, Villalonga N, Calvo M, Escalada A, Solsona C, Soler C, Tamkun MM, Felipe A (2008) Kv1.5 association modifies Kv1.3 traffic and membrane localization. J Biol Chem 283(13):8756–8764.  https://doi.org/10.1074/jbc.M708223200 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yang Y, Wang YF, Yang XF, Wang ZH, Lian YT, Yang Y, Li XW, Gao X, Chen J, Shu YW, Cheng LX, Liao YH, Liu K (2013) Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL. J Lipid Res 54(1):34–43.  https://doi.org/10.1194/jlr.M023846 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lavrnja I, Smiljanic K, Savic D, Mladenovic-Djordjevic A, Tesovic K, Kanazir S, Pekovic S (2017) Expression profiles of cholesterol metabolism-related genes are altered during development of experimental autoimmune encephalomyelitis in the rat spinal cord. Sci Rep 7(1):2702.  https://doi.org/10.1038/s41598-017-02638-8 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, Aerts JM, Amor S, Nieuwenhuis EE, Laman JD (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129(Pt 2):517–526.  https://doi.org/10.1093/brain/awh707 CrossRefPubMedGoogle Scholar
  58. 58.
    Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflamm 10:35.  https://doi.org/10.1186/1742-2094-10-35 CrossRefGoogle Scholar
  59. 59.
    Rangaraju S, Raza SA, Pennati A, Deng Q, Dammer EB, Duong D, Pennington MW, Tansey MG, Lah JJ, Betarbet R, Seyfried NT, Levey AI (2017) A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation. J Neuroinflamm 14(1):128.  https://doi.org/10.1186/s12974-017-0906-6 CrossRefGoogle Scholar
  60. 60.
    Nguyen HM, Grossinger EM, Horiuchi M, Davis KW, Jin LW, Maezawa I, Wulff H (2017) Differential Kv1.3, KCa3.1, and Kir2.1 expression in “classically” and “alternatively” activated microglia. Glia 65(1):106–121.  https://doi.org/10.1002/glia.23078 CrossRefPubMedGoogle Scholar
  61. 61.
    Brambilla R, Morton PD, Ashbaugh JJ, Karmally S, Lambertsen KL, Bethea JR (2014) Astrocytes play a key role in EAE pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination. Glia 62(3):452–467.  https://doi.org/10.1002/glia.22616 CrossRefPubMedGoogle Scholar
  62. 62.
    Bjelobaba I, Savic D, Lavrnja I (2017) Multiple sclerosis and neuroinflammation: the overview of current and prospective therapies. Curr Pharm Des 23(5):693–730.  https://doi.org/10.2174/1381612822666161214153108 CrossRefPubMedGoogle Scholar
  63. 63.
    Pekny M (2001) Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. Prog Brain Res 132:23–30.  https://doi.org/10.1016/s0079-6123(01)32062-9 CrossRefPubMedGoogle Scholar
  64. 64.
    Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204(4):428–437.  https://doi.org/10.1002/path.1645 CrossRefPubMedGoogle Scholar
  65. 65.
    Aquino DA, Chiu FC, Brosnan CF, Norton WT (1988) Glial fibrillary acidic protein increases in the spinal cord of Lewis rats with acute experimental autoimmune encephalomyelitis. J Neurochem 51(4):1085–1096CrossRefPubMedGoogle Scholar
  66. 66.
    Zhu J, Yan J, Thornhill WB (2014) The Kv1.3 potassium channel is localized to the cis-Golgi and Kv1.6 is localized to the endoplasmic reticulum in rat astrocytes. FEBS J 281(15):3433–3445.  https://doi.org/10.1111/febs.12871 CrossRefPubMedGoogle Scholar
  67. 67.
    Reeves TM, Trimmer PA, Colley BS, Phillips LL (2016) Targeting Kv1.3 channels to reduce white matter pathology after traumatic brain injury. Exp Neurol 283(Pt A):188–203.  https://doi.org/10.1016/j.expneurol.2016.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Tsukada N, Miyagi K, Matsuda M, Yanagisawa N, Yone K (1991) Tumor necrosis factor and interleukin-1 in the CSF and sera of patients with multiple sclerosis. J Neurol Sci 104(2):230–234CrossRefPubMedGoogle Scholar
  69. 69.
    Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123(Pt 6):1174–1183CrossRefPubMedGoogle Scholar
  70. 70.
    Korn T, Magnus T, Jung S (2005) Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factor-alpha. FASEB J 19(13):1878–1880.  https://doi.org/10.1096/fj.05-3748fje CrossRefPubMedGoogle Scholar
  71. 71.
    Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunol Rev 248(1):170–187.  https://doi.org/10.1111/j.1600-065X.2012.01135.x CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Carrillo-de Sauvage MA, Gomez A, Ros CM, Ros-Bernal F, Martin ED, Perez-Valles A, Gallego-Sanchez JM, Fernandez-Villalba E, Barcia C Sr., Barcia C Jr., Herrero MT (2012) CCL2-expressing astrocytes mediate the extravasation of T lymphocytes in the brain. Evidence from patients with glioma and experimental models in vivo. PLoS ONE 7(2):e30762.  https://doi.org/10.1371/journal.pone.0030762 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Huang DR, Wang J, Kivisakk P, Rollins BJ, Ransohoff RM (2001) Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. J Exp Med 193(6):713–726CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Iva Bozic
    • 1
  • Katarina Tesovic
    • 1
  • Danijela Laketa
    • 2
  • Marija Adzic
    • 2
  • Marija Jakovljevic
    • 1
  • Ivana Bjelobaba
    • 1
  • Danijela Savic
    • 1
  • Nadezda Nedeljkovic
    • 2
  • Sanja Pekovic
    • 1
  • Irena Lavrnja
    • 1
  1. 1.Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
  2. 2.Institute of Physiology and Biochemistry, Faculty of BiologyUniversity of BelgradeBelgradeSerbia

Personalised recommendations