Skip to main content
Log in

Naringenin Exerts Anti-inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Associated with the Nrf2/HO-1 Axis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Naringenin (NGN; 5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one; C15H12O5), a flavanone, is found in citrus fruits and has been viewed as an antioxidant and anti-inflammatory agent. NGN is a potent inducer of the nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulates the expression of heme oxygenase-1 (HO-1), an enzyme exhibiting both antioxidant and anti-inflammatory effects. The complete mechanism by which NGN exerts anti-inflammatory actions is not completely understood yet. Therefore, we investigated here whether NGN would be able to reduce the inflammation induced by paraquat (PQ) in SH-SY5Y cells. Additionally, we analyzed the mechanism associated with the NGN-induced anti-inflammatory effect. We found that a pretreatment with NGN at 80 µM for 2 h decreased the levels of pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in PQ-treated SH-SY5Y cells. The production of nitric oxide (NO·) and levels of cyclooxygenase-2 (COX-2) and of the inducible isoform of nitric oxide synthase (iNOS) were downregulated by NGN in the cells exposed to PQ. Moreover, NGN downregulated the activation of the nuclear factor-κB (NF-κB) in PQ-treated cells. The anti-apoptotic and anti-inflammatory effects promoted by NGN were abolished by ZnPP IX (a specific inhibitor of HO-1) or by knockdown of Nrf2 by small interfering RNA (siRNA). Therefore, NGN induced anti-inflammatory effects in PQ-treated SH-SY5Y cells by a mechanism associated with the Nrf2/HO-1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. van der Heide D, Kastelijn J, Schröder-van der Elst JP (2003) Flavonoids and thyroid disease. Biofactors 19:113–119

    Article  PubMed  Google Scholar 

  2. Hwang SL, Shih PH, Yen GC (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60:877–885. https://doi.org/10.1021/jf204452y

    Article  CAS  PubMed  Google Scholar 

  3. Escudero-López B, Calani L, Fernández-Pachón MS, Ortega A, Brighenti F, Crozier A, Del Rio D (2014) Absorption, metabolism, and excretion of fermented orange juice (poly)phenols in rats. Biofactors 40:327–335

    Article  PubMed  Google Scholar 

  4. Esmaeili MA, Alilou M (2014) Naringenin attenuates CCl4 -induced hepatic inflammation by the activation of an Nrf2-mediated pathway in rats. Clin Exp Pharmacol Physiol 41:416–422. https://doi.org/10.1111/1440-1681.12230

    Article  CAS  PubMed  Google Scholar 

  5. Ramprasath T, Senthamizharasi M, Vasudevan V, Sasikumar S, Yuvaraj S, Selvam GS (2014) Naringenin confers protection against oxidative stress through upregulation of Nrf2 target genes in cardiomyoblast cells. J Physiol Biochem 70:407–415. https://doi.org/10.1007/s13105-014-0318-3

    Article  CAS  PubMed  Google Scholar 

  6. Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, Pinho-Ribeiro FA, Georgetti SR, Baracat MM, Casagrande R, Verri WA Jr (2016) Naringenin Inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-PKG-KATP channel signaling pathway. PLoS ONE 11:e0153015. https://doi.org/10.1371/journal.pone.0153015

    Article  PubMed  PubMed Central  Google Scholar 

  7. Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E (2008) Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33:2444–2471. https://doi.org/10.1007/s11064-008-9775-9

    Article  CAS  PubMed  Google Scholar 

  8. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  9. Nakagami Y (2016) Nrf2 is an attractive therapeutic target for retinal diseases. Oxid Med Cell Longev 2016:7469326

  10. Gullotta F, di Masi A, Coletta M, Ascenzi P (2012) CO metabolism, sensing, and signaling. Biofactors 38:1–13

    Article  CAS  PubMed  Google Scholar 

  11. O’Brien L, Hosick PA, John K, Stec DE, Hinds TD Jr (2015) Biliverdin reductase isozymes in metabolism. Trends Endocrinol Metab 26:212–220. https://doi.org/10.1016/j.tem.2015.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brown KK, Hampton MB (2011) Biological targets of isothiocyanates. Biochim Biophys Acta 1810:888–894. https://doi.org/10.1016/j.bbagen.2011.06.004

    Article  CAS  PubMed  Google Scholar 

  13. Taki-Nakano N, Ohzeki H, Kotera J, Ohta H (2014) Cytoprotective effects of 12-oxo phytodienoic acid, a plant-derived oxylipin jasmonate, on oxidative stress-induced toxicity in human neuroblastoma SH-SY5Y cells. Biochim Biophys Acta 1840:3413–3422. https://doi.org/10.1016/j.bbagen.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  14. Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X (2014) Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 79:380–388. https://doi.org/10.1016/j.neuropharm.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  15. Lukiw WJ, Bazan NG (2000) Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem Res 25:1173–1184

    Article  CAS  PubMed  Google Scholar 

  16. Mattson MP (2005) NF-kappaB in the survival and plasticity of neurons. Neurochem Res 30:883–893

    Article  CAS  PubMed  Google Scholar 

  17. Lee CH, Jeon YT, Kim SH, Song YS (2007) NF-kappaB as a potential molecular target for cancer therapy. Biofactors 29:19–35

    Article  CAS  PubMed  Google Scholar 

  18. Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77. https://doi.org/10.3389/fnmol.2015.00077

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim HP, Ryter SW, Choi AM (2006) CO as a cellular signaling molecule. Annu Rev Pharmacol Toxicol 46:411–449

    Article  CAS  PubMed  Google Scholar 

  20. Desmard M, Boczkowski J, Poderoso J, Motterlini R (2007) Mitochondrial and cellular heme-dependent proteins as targets for the bioactive function of the heme oxygenase/carbon monoxide system. Antioxid Redox Signal 9:2139–2155

    Article  CAS  PubMed  Google Scholar 

  21. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:86. https://doi.org/10.1186/1476-4598-12-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kay E, Scotland RS, Whiteford JR (2014) Toll-like receptors: role in inflammation and therapeutic potential. Biofactors 40:284–294

    Article  CAS  PubMed  Google Scholar 

  24. Villa V, Thellung S, Bajetto A, Gatta E, Robello M, Novelli F, Tasso B, Tonelli M, Florio T (2016) Novel celecoxib analogues inhibit glial production of prostaglandin E2, nitric oxide, and oxygen radicals reverting the neuroinflammatory responses induced by misfolded prion protein fragment 90–231 or lipopolysaccharide. Pharmacol Res 113:500–514. https://doi.org/10.1016/j.phrs.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  25. Lee JE, Park JH, Jang SJ, Koh HC (2014) Rosiglitazone inhibits chlorpyrifos-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. Toxicol Appl Pharmacol 278:159–171. https://doi.org/10.1016/j.taap.2014.04.021

    Article  CAS  PubMed  Google Scholar 

  26. Park JH, Park YS, Lee JB, Park KH, Paik MK, Jeong M, Koh HC (2016) Meloxicam inhibits fipronil-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. J Appl Toxicol 36:10–23. https://doi.org/10.1002/jat.3136

    Article  CAS  PubMed  Google Scholar 

  27. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653

    Article  CAS  PubMed  Google Scholar 

  28. Arias-Salvatierra D, Silbergeld EK, Acosta-Saavedra LC, Calderon-Aranda ES (2011) Role of nitric oxide produced by iNOS through NF-κB pathway in migration of cerebellar granule neurons induced by Lipopolysaccharide. Cell Signal 23:425–435. https://doi.org/10.1016/j.cellsig.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  29. Dai Z, Wu Z, Yang Y, Wang J, Satterfield MC, Meininger CJ, Bazer FW, Wu G (2013) Nitric oxide and energy metabolism in mammals. Biofactors 39:383–391

    Article  CAS  PubMed  Google Scholar 

  30. Cao H, Yu R, Choi Y, Ma ZZ, Zhang H, Xiang W, Lee DY, Berman BM, Moudgil KD, Fong HH, van Breemen RB (2010) Discovery of cyclooxygenase inhibitors from medicinal plants used to treat inflammation. Pharmacol Res 61:519–524. https://doi.org/10.1016/j.phrs.2010.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang W, Tiffany-Castiglioni E, Lee MY, Son IH (2010) Paraquat induces cyclooxygenase-2 (COX-2) implicated toxicity in human neuroblastoma SH-SY5Y cells. Toxicol Lett 199:239–246. https://doi.org/10.1016/j.toxlet.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  32. de Oliveira MR, Ferreira GC, Schuck PF (2016) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol In Vitro 32:41–54. https://doi.org/10.1016/j.tiv.2015.12.005

    Article  PubMed  Google Scholar 

  33. de Oliveira MR, Schuck PF, Bosco SM (2016) Tanshinone I induces mitochondrial protection through an Nrf2-dependent mechanism in paraquat-treatedhuman neuroblastoma SH-SY5Y cells. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0009-x

    Google Scholar 

  34. de Oliveira MR, Peres A, Gama CS, Bosco SM (2016) Pinocembrin provides mitochondrial protection by the activation of the Erk1/2-Nrf2 signaling pathway in SH-SY5Y neuroblastoma cells exposed to paraquat. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0135-5

    Google Scholar 

  35. de Oliveira MR, de Souza IC, Fürstenau CR (2017) Carnosic acid induces anti-inflammatory effects in paraquat-treated SH-SY5Y cells through a mechanism involving a crosstalk between the Nrf2/HO-1 Axis and NF-κB. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0389-6

    Google Scholar 

  36. de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Gama CS, Bosco SM (2016) Carnosic acid protects mitochondria of human neuroblastoma SH-SY5Y cells exposed to paraquat through activation of the Nrf2/HO-1Axis. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0100-3

    Google Scholar 

  37. Li F, Tian X, Zhan X, Wang B, Ding M, Pang H (2017) Clathrin-dependent uptake of paraquat into SH-SY5Y cells and its internalization into different subcellular compartments. Neurotox Res 32:204–217. https://doi.org/10.1007/s12640-017-9722-0

    Article  CAS  PubMed  Google Scholar 

  38. Ortiz-Ortiz MA, Morán JM, González-Polo RA, Niso-Santano M, Soler G, Bravo-San Pedro JM, Fuentes JM (2009) Nitric oxide-mediated toxicity in paraquat-exposed SH-SY5Y cells: a protective role of 7-nitroindazole. Neurotox Res 16:160–173. https://doi.org/10.1007/s12640-009-9065-6

    Article  CAS  PubMed  Google Scholar 

  39. Labbé RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: a metabolite with a mission. Clin Chem 45:2060–2072

    PubMed  Google Scholar 

  40. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  41. de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Bosco SM (2016) Carnosic acid affords mitochondrial protection in chlorpyrifos-treated Sh-Sy5y cells. Neurotox Res 30:367–379. https://doi.org/10.1007/s12640-016-9620-x

    Article  PubMed  Google Scholar 

  42. de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM (2015) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 242:396–406. https://doi.org/10.1016/j.cbi.2015.11.003

    Article  PubMed  Google Scholar 

  43. Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, Fabio G (2011) Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol 44:192–201. https://doi.org/10.1007/s12035-011-8181-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rehman MU, Tahir M, Khan AQ, Khan R, Lateef A, Oday-O-Hamiza, Qamar W, Ali F, Sultana S (2013) Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation, oxidative stress and inflammation: plausible role of NF-κB. Toxicol Lett 216:146–158. https://doi.org/10.1016/j.toxlet.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  45. Sharma N, Nehru B (2015) Characterization of the lipopolysaccharide induced model of Parkinson’s disease: Role of oxidative stress and neuroinflammation. Neurochem Int 87:92–105. https://doi.org/10.1016/j.neuint.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  46. Bhattacharjee N, Borah A (2016) Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease. Neurochem Int 101:48–55. https://doi.org/10.1016/j.neuint.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  47. Niranjan R (2014) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 49:28–38. https://doi.org/10.1007/s12035-013-8483-x

    Article  CAS  PubMed  Google Scholar 

  48. Ljubisavljevic S, Stojanovic I (2015) Neuroinflammation and demyelination from the point of nitrosative stress as a new target for neuroprotection. Rev Neurosci 26:49–73. https://doi.org/10.1515/revneuro-2014-0060

    Article  CAS  PubMed  Google Scholar 

  49. Ljubisavljevic S (2016) Oxidative stress and neurobiology of demyelination. Mol Neurobiol 53:744–758. https://doi.org/10.1007/s12035-014-9041-x

    Article  CAS  PubMed  Google Scholar 

  50. Jarrott B, Williams SJ (2016) Chronic brain inflammation: the neurochemical basis for drugs to reduce inflammation. Neurochem Res 41:523–533. https://doi.org/10.1007/s11064-015-1661-7

    Article  CAS  PubMed  Google Scholar 

  51. Hua FZ, Ying J, Zhang J, Wang XF, Hu YH, Liang YP, Liu Q, Xu GH (2016) Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int J Mol Med 38:1271–12780. https://doi.org/10.3892/ijmm.2016.2715

    Article  CAS  PubMed  Google Scholar 

  52. Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri WA Jr (2016) Naringenin reduces inflammatory pain in mice. Neuropharmacology 105:508–519. https://doi.org/10.1016/j.neuropharm.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  53. Yang J, Li Q, Zhou XD, Kolosov VP, Perelman JM (2011) Naringenin attenuates mucous hypersecretion by modulating reactive oxygen species production and inhibiting NF-κB activity via EGFR-PI3K-Akt/ERK MAPKinase signaling in human airway epithelial cells. Mol Cell Biochem 351:29–40. https://doi.org/10.1007/s11010-010-0708-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Roberto de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11064_2018_2495_MOESM1_ESM.pdf

Figure S1—The effects of NGN treatment on the Nrf2/HO-1 axis. SH-SY5Y cells were treated with NGN at different concentrations for 8 h (a). The effects of a treatment with NGN at 80 µM for different periods on the levels of Nrf2 in the cell nucleus (b). The effects of NGN at different concentrations for 24 h on the content of HO-1 (c). The effects of Nrf2 knockdown (48 h) on the levels of HO-1 in SH-SY5Y cells treated with NGN at 80 µM for 24 h. * p < 0.05 different from the control group; ** p < 0.05 different from the NGN-treated cells transfected with NC siRNA (PDF 100 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.R., Andrade, C.M.B. & Fürstenau, C.R. Naringenin Exerts Anti-inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Associated with the Nrf2/HO-1 Axis. Neurochem Res 43, 894–903 (2018). https://doi.org/10.1007/s11064-018-2495-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2495-x

Keywords

Navigation