Advertisement

Neurochemical Research

, Volume 43, Issue 4, pp 838–847 | Cite as

Involvement of Ventral Periaqueductal Gray Dopaminergic Neurons in Propofol Anesthesia

  • Jia Li
  • Tian Yu
  • Fu Shi
  • Yu Zhang
  • Zikun Duan
  • Bao Fu
  • Yi Zhang
Original Paper

Abstract

It has been reported that central dopaminergic system is implicated in the mechanism underlying general anesthesia. Whether dopamine (DA) neurons in midbrain ventral periaqueductal gray (vPAG) are involved in general anesthesia and how general anesthetics affect these neurons remain sparsely documented. To determine the role of vPAG DA neurons in propofol-induced anesthesia, we performed microinjection of 6-hydroxydopamine (6-OHDA) into vPAG to damage DA neurons and investigated the alteration in somatosensory electroencephalogram (EEG), as well as the induction and recovery time of propofol anesthesia. Subsequently, we examined the effect of propofol on the electrophysiological activity of DA neurons in vPAG using whole-cell patch clamp. Two weeks after 6-OHDA microinfusion, DA neurons in the vPAG were markedly reduced by 63.6% in the 6-OHDA-treated rats compared with vehicle rats. This lesion significantly shortened the induction time (7.15 ± 3.97 s vs. 11.18 ± 2.83 s, P < 0.05) and prolonged the recovery time of propofol anesthesia (780.26 ± 150.86 s vs. 590.68 ± 107.97 s, P < 0.05). Meanwhile, EEG in somatosensory cortex revealed that delta power (0–4 Hz) was significantly higher in 6-OHDA-treated rats than vehicle rats. In the electrophysiological experiment, propofol decreased the frequency of spontaneous excitatory postsynaptic currents rather than the amplitude and decay time. In addition, propofol preferentially increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents without affecting the amplitude. Significance: Propofol can promote presynaptic GABA release, inhibit presynaptic glutamate release and increase postsynaptic GABAA receptor sensitivity, which eventually inhibits the activity of vPAG DA neurons and thereby influences the state of consciousness.

Keywords

vPAG Propofol Righting reflex Patch-clamp Dopamine neuron 

Notes

Acknowledgements

The present work was supported by grants from the National Natural Science Foundation of China (NSFC, Grant Nos. 81560237).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest in the authorship or publication of the contribution.

References

  1. 1.
    Alkire MT, McReynolds JR, Hahn EL et al (2007) Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology 107(2):264–272CrossRefPubMedGoogle Scholar
  2. 2.
    Chen L, Xu M, Li GY et al (2014) Incidence, risk factors and consequences of emergence agitation in adult patients after elective craniotomy for brain tumor: a prospective cohort study. PLoS ONE 9(12):e114239CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sethi S, Ghai B, Ram J et al (2013) Postoperative emergence delirium in pediatric patients undergoing cataract surgery—a comparison of desflurane and sevoflurane. Paediatr Anaesth 23(12):1131–1137PubMedGoogle Scholar
  4. 4.
    Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71(1):155–234CrossRefPubMedGoogle Scholar
  5. 5.
    Larkin JD, Jenni NL, Floresco SB (2016) Modulation of risk/reward decision making by dopaminergic transmission within the basolateral amygdala. Psychopharmacology 233(1):121–136CrossRefPubMedGoogle Scholar
  6. 6.
    Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133CrossRefPubMedGoogle Scholar
  7. 7.
    Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202CrossRefPubMedGoogle Scholar
  8. 8.
    Taylor NE, Chemali JJ, Brown EN et al (2013) Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology 118(1):30–39CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Solt K, Cotten JF, Cimenser A et al (2011) Methylphenidate actively induces emergence from general anesthesia. Anesthesiology 115(4):791–803CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Solt K, Van Dort CJ, Chemali JJ et al (2014) Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology 121(2):311–319CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhou X, Wang Y, Zhang C et al (2015) The role of dopaminergic VTA neurons in general anesthesia. PLoS ONE 10(9):e0138187CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shirasaka T, Yonaha T, Onizuka S et al (2011) Effects of orexin-A on propofol anesthesia in rats. J Anesth 25(1):65–71CrossRefPubMedGoogle Scholar
  13. 13.
    Akaike N, Murakami N, Katsurabayashi S et al (2002) Focal stimulation of single GABAergic presynaptic boutons on the rat hippocampal neuron. Neurosci Res 42(3):187–195CrossRefPubMedGoogle Scholar
  14. 14.
    Santiago RM, Tonin FS, Barbiero J et al (2015) The nonsteroidal antiinflammatory drug piroxicam reverses the onset of depressive-like behavior in 6-OHDA animal model of Parkinson’s disease. Neuroscience 300:246–253CrossRefPubMedGoogle Scholar
  15. 15.
    Wang J, Bi M, Xie J (2015) Ceruloplasmin is involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Cell Mol Neurobiol 35(5):661–668CrossRefPubMedGoogle Scholar
  16. 16.
    Giordano S, Lee J, Darley-Usmar VM et al (2012) Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS ONE 7(9):e44610CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Taylor NE, Van Dort CJ, Kenny JD et al. (2016) Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci USA 113(45):12826–12831CrossRefGoogle Scholar
  18. 18.
    Tarnal V, Vlisides PE, Mashour GA (2016) The neurobiology of anesthetic emergence. J Neurosurg Anesth 28(3):250–255Google Scholar
  19. 19.
    Stratford TR, Wirtshafter D (1990) Ascending dopaminergic projections from the dorsal raphe nucleus in the rat. Brain Res 511(1):173–176CrossRefPubMedGoogle Scholar
  20. 20.
    Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46(6):575–605CrossRefPubMedGoogle Scholar
  21. 21.
    Yoshida M, Shirouzu M, Tanaka M et al (1989) Dopaminergic neurons in the nucleus raphe dorsalis innervate the prefrontal cortex in the rat: a combined retrograde tracing and immunohistochemical study using anti-dopamine serum. Brain Res 496(1–2):373–376CrossRefPubMedGoogle Scholar
  22. 22.
    Freeman A, Ciliax B, Bakay R et al (2001) Nigrostriatal collaterals to thalamus degenerate in parkinsonian animal models. Ann Neurol 50(3):321–329CrossRefPubMedGoogle Scholar
  23. 23.
    Semba K, Reiner PB, McGeer EG et al (1988) Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J Comp Neurol 267(3):433–453CrossRefPubMedGoogle Scholar
  24. 24.
    Ornstein K, Milon H, McRae-Degueurce A et al (1987) Biochemical and radioautographic evidence for dopaminergic afferents of the locus coeruleus originating in the ventral tegmental area. J Neural Transm 70(3–4):183–191CrossRefPubMedGoogle Scholar
  25. 25.
    Chou TC, Bjorkum AA, Gaus SE et al (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22(3):977–990PubMedGoogle Scholar
  26. 26.
    Chemali JJ, Van Dort CJ, Brown EN et al (2012) Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology 116(5):998–1005CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yuan J, Luo Z, Zhang Y et al (2017) GABAergic ventrolateral preoptic nucleus neurons are involved in the mediation of the anesthetic hypnosis induced by propofol. Mol Med Rep 16(3):3179–3186CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu Y, Zhang Y, Qian K et al (2017) Histaminergic H1 and H2 receptors mediate the effects of propofol on the noradrenalin-inhibited neurons in rat ventrolateral preoptic nucleus. Neurochem Res 42(5):1387–1393CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang LN, Li ZJ, Tong L et al (2012) Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth Analg 115(4):789–796CrossRefPubMedGoogle Scholar
  30. 30.
    Banks MI, Pearce RA (1999) Dual actions of volatile anesthetics on GABA(A) IPSCs: dissociation of blocking and prolonging effects. Anesthesiology 90(1):120–134CrossRefPubMedGoogle Scholar
  31. 31.
    Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci USA 111(10):3859–3864CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Laalou FZ, de Vasconcelos AP, Oberling P et al (2008) Involvement of the basal cholinergic forebrain in the mediation of general (propofol) anesthesia. Anesthesiology 108(5):888–896CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
  2. 2.Department of AnesthesiologyThe First Affiliated Hospital of Xi’an Medical CollegeXi’anChina
  3. 3.Department of AnesthesiologyAffiliated Hospital of Zunyi Medical CollegeZunyiChina
  4. 4.Department of Critical Care MedicineAffiliated Hospital of Zunyi Medical CollegeZunyiChina

Personalised recommendations