Neurochemical Research

, Volume 43, Issue 4, pp 796–805 | Cite as

Estrogen Receptors Are Involved in the Neuroprotective Effect of Silibinin in Aβ1–42-Treated Rats

  • Xiaoyu Song
  • Bo Liu
  • Lingyu Cui
  • Biao Zhou
  • Lu Liu
  • Weiwei Liu
  • Guodong Yao
  • Mingyu Xia
  • Toshihiko Hayashi
  • Shunji Hattori
  • Yuko Ushiki-Kaku
  • Shin-ichi Tashiro
  • Takashi Ikejima
Original Paper


Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is characterized by a cascade of pathologic changes. A widely discussed theory indicates that amyloid β (Aβ) peptides are the causative agents of AD. Silibinin, a flavonoid derived from milk thistle, is well known for its hepato-protective activities and we have reported the neuroprotective effects of silibinin. In this study, we investigated the role of estrogen receptors (ERs) in silibinin’s neuroprotective effect on Aβ1−42-injected rats. Results of Morris water maze and novel object-recognition tests demonstrated that silibinin significantly attenuated Aβ1−42-induced memory impairment. Silibinin attenuated ERs and PI3K-Akt pathways, as well as modulated mitogen-activated protein kinases in the hippocampus of Aβ1−42-injected rats. Taken together, silibinin is a potential candidate in the treatment of Alzheimer’s disease.


Silibinin Amyloid Estrogen receptor Memory impairment Alzheimer’s disease 



This research was supported by National Natural Science Foundation of China (No. 81273517).


  1. 1.
    Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, Greengard P, Relkin NR (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156:15–20CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jensen EV (1962) On the mechanism of estrogen action. Perspect Biol Med 6:47–59CrossRefPubMedGoogle Scholar
  4. 4.
    Sundermann EE, Maki PM, Bishop JR (2010) A review of estrogen receptor alpha gene (ESR1) polymorphisms, mood, and cognition. Menopause 17:874–886CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rissman EF, Heck AL, Leonard JE, Shupnik MA, Gustafsson JA (2002) Disruption of estrogen receptor beta gene impairs spatial learning in female mice. Proc Natl Acad Sci USA 99:3996–4001CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee JH, Jiang Y, Han DH, Shin SK, Choi WH, Lee MJ (2014) Targeting estrogen receptors for the treatment of Alzheimer’s disease. Mol Neurobiol 49:39–49CrossRefPubMedGoogle Scholar
  7. 7.
    Warner M, Huang B, Gustafsson JA (2017) Estrogen receptor beta as a pharmaceutical target. Trends Pharmacol Sci 38:92–99CrossRefPubMedGoogle Scholar
  8. 8.
    Flora K, Hahn M, Rosen H, Benner K (1998) Milk thistle (Silybum marianum) for the therapy of liver disease. Am J Gastroenterol 93:139–143CrossRefPubMedGoogle Scholar
  9. 9.
    Lu P, Mamiya T, Lu LL, Mouri A, Zou L, Nagai T, Hiramatsu M, Ikejima T, Nabeshima T (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 157:1270–1277CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Song X, Zhou B, Zhang P, Lei D, Wang Y, Yao G, Hayashi T, Xia M, Tashiro S, Onodera S, Ikejima T (2016) Protective effect of silibinin on learning and memory impairment in LPS-treated rats via ROS-BDNF-TrkB pathway. Neurochem Res 41:1662–1672CrossRefPubMedGoogle Scholar
  11. 11.
    Song X, Zhou B, Cui L, Lei D, Zhang P, Yao G, Xia M, Hayashi T, Hattori S, Ushiki-Kaku Y, Tashiro SI, Onodera S, Ikejima T (2017) Silibinin ameliorates Abeta25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress. Neurochem Res 42:1073–1083CrossRefPubMedGoogle Scholar
  12. 12.
    Song X, Liu B, Cui L, Zhou B, Liu W, Xu F, Hayashi T, Hattori S, Ushiki-Kaku Y, Tashiro SI, Ikejima T (2017) Silibinin ameliorates anxiety/depression-like behaviors in amyloid beta-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus. Physiol Behav 179:487–493CrossRefPubMedGoogle Scholar
  13. 13.
    Seidlova-Wuttke D, Becker T, Christoffel V, Jarry H, Wuttke W (2003) Silymarin is a selective estrogen receptor beta (ERbeta) agonist and has estrogenic effects in the metaphysis of the femur but no or antiestrogenic effects in the uterus of ovariectomized (ovx) rats. J Steroid Biochem Mol Biol 86:179–188CrossRefPubMedGoogle Scholar
  14. 14.
    El-Shitany NA, Hegazy S, El-Desoky K (2010) Evidences for antiosteoporotic and selective estrogen receptor modulator activity of silymarin compared with ethinylestradiol in ovariectomized rats. Phytomedicine 17:116–125CrossRefPubMedGoogle Scholar
  15. 15.
    Baluchnejadmojarad T, Roghani M, Mafakheri M (2010) Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: involvement of estrogen receptors and oxidative stress. Neurosci Lett 480:206–210CrossRefPubMedGoogle Scholar
  16. 16.
    Zheng N, Liu L, Liu W, Zhang P, Huang H, Zang L, Hayashi T, Tashiro S, Onodera S, Xia M, Ikejima T (2016) ERbeta up-regulation was involved in silibinin-induced growth inhibition of human breast cancer MCF-7 cells. Arch Biochem Biophys 591:141–149CrossRefPubMedGoogle Scholar
  17. 17.
    Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053CrossRefPubMedGoogle Scholar
  18. 18.
    Faucher P, Mons N, Micheau J, Louis C, Beracochea DJ (2015) Hippocampal injections of oligomeric amyloid beta-peptide (1-42) induce selective working memory deficits and long-lasting alterations of ERK signaling pathway. Front Aging Neurosci 7:245PubMedGoogle Scholar
  19. 19.
    Prvulovic D, Schneider B (2014) Pharmacokinetic and pharmacodynamic evaluation of donepezil for the treatment of Alzheimer’s disease. Expert Opin Drug Metab Toxicol 10:1039–1050CrossRefPubMedGoogle Scholar
  20. 20.
    Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1:1306–1311CrossRefPubMedGoogle Scholar
  21. 21.
    Pardridge WM (2016) CSF, blood-brain barrier, and brain drug delivery. Expert Opin Drug Deliv 13:963–975CrossRefPubMedGoogle Scholar
  22. 22.
    Postenyi Z, Tekes K, Toth-Molnar E, Kalasz H (2015) HPLC analysis of blood-brain barrier penetration of 4-fluorodeprenyl. J Pharm Biomed Anal 102:529–534CrossRefPubMedGoogle Scholar
  23. 23.
    Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, Zhang T, Chen X, Huang J, Sun X, Li Q, Fang S, Xu J, Yao Z, Gu H (2015) Silibinin inhibits acetylcholinesterase activity and amyloid beta peptide aggregation: a dual-target drug for the treatment of Alzheimer’s disease. Neurobiol Aging 36:1792–1807CrossRefPubMedGoogle Scholar
  24. 24.
    Brownson DM, Azios NG, Fuqua BK, Dharmawardhane SF, Mabry TJ (2002) Flavonoid effects relevant to cancer. J Nutr 132:3482S-3489SCrossRefPubMedGoogle Scholar
  25. 25.
    Galluzzo P, Marino M (2006) Nutritional flavonoids impact on nuclear and extranuclear estrogen receptor activities. Genes Nutr 1:161–176CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhao L, Woody SK, Chhibber A (2015) Estrogen receptor beta in Alzheimer’s disease: from mechanisms to therapeutics. Ageing Res Rev 24:178–190CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Osterlund MK, Gustafsson JA, Keller E, Hurd YL (2000) Estrogen receptor beta (ERbeta) messenger ribonucleic acid (mRNA) expression within the human forebrain: distinct distribution pattern to ERalpha mRNA. J Clin Endocrinol Metab 85:3840–3846PubMedGoogle Scholar
  28. 28.
    Pliskova M, Vondracek J, Kren V, Gazak R, Sedmera P, Walterova D, Psotova J, Simanek V, Machala M (2005) Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology 215:80–89CrossRefPubMedGoogle Scholar
  29. 29.
    Sinkevicius KW, Burdette JE, Woloszyn K, Hewitt SC, Hamilton K, Sugg SL, Temple KA, Wondisford FE, Korach KS, Woodruff TK, Greene GL (2008) An estrogen receptor-alpha knock-in mutation provides evidence of ligand-independent signaling and allows modulation of ligand-induced pathways in vivo. Endocrinology 149:2970–2979CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565CrossRefPubMedGoogle Scholar
  31. 31.
    Ishunina TA, Swaab DF (2001) Increased expression of estrogen receptor alpha and beta in the nucleus basalis of Meynert in Alzheimer’s disease. Neurobiol Aging 22:417–426CrossRefPubMedGoogle Scholar
  32. 32.
    Savaskan E, Olivieri G, Meier F, Ravid R, Muller-Spahn F (2001) Hippocampal estrogen beta-receptor immunoreactivity is increased in Alzheimer’s disease. Brain Res 908:113–119CrossRefPubMedGoogle Scholar
  33. 33.
    Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J (2012) Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta 1820:453–460CrossRefPubMedGoogle Scholar
  34. 34.
    Shi C, Zheng DD, Wu FM, Liu J, Xu J (2012) The phosphatidyl inositol 3 kinase-glycogen synthase kinase 3beta pathway mediates bilobalide-induced reduction in amyloid beta-peptide. Neurochem Res 37:298–306CrossRefPubMedGoogle Scholar
  35. 35.
    Shi C, Wu F, Zhu XC, Xu J (2013) Incorporation of beta-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3beta signaling. Biochim Biophys Acta 1830:2538–2544CrossRefPubMedGoogle Scholar
  36. 36.
    Chiang HC, Wang L, Xie Z, Yau A, Zhong Y (2010) PI3 kinase signaling is involved in Abeta-induced memory loss in drosophila. Proc Natl Acad Sci USA 107:7060–7065CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kumar S, Patel R, Moore S, Crawford DK, Suwanna N, Mangiardi M, Tiwari-Woodruff SK (2013) Estrogen receptor beta ligand therapy activates PI3K/Akt/mTOR signaling in oligodendrocytes and promotes remyelination in a mouse model of multiple sclerosis. Neurobiol Dis 56:131–144CrossRefPubMedGoogle Scholar
  38. 38.
    Wang M, Wang Y, Weil B, Abarbanell A, Herrmann J, Tan J, Kelly M, Meldrum DR (2009) Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 296:R972–R978Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoyu Song
    • 1
    • 2
  • Bo Liu
    • 1
  • Lingyu Cui
    • 1
  • Biao Zhou
    • 1
  • Lu Liu
    • 1
  • Weiwei Liu
    • 1
  • Guodong Yao
    • 1
    • 5
  • Mingyu Xia
    • 1
  • Toshihiko Hayashi
    • 1
  • Shunji Hattori
    • 3
  • Yuko Ushiki-Kaku
    • 3
  • Shin-ichi Tashiro
    • 4
  • Takashi Ikejima
    • 1
  1. 1.China–Japan Research Institute of Medical and Pharmaceutical SciencesShenyang Pharmaceutical UniversityShenyangChina
  2. 2.Medical Research CenterShenzhen University Health Science CenterShenzhenChina
  3. 3.Nippi Research Institute of BiomatrixTorideJapan
  4. 4.Department of Medical Education & Primary CareKyoto Prefectural University of MedicineKyoto City, KyotoJapan
  5. 5.School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education)Shenyang Pharmaceutical UniversityShenyangChina

Personalised recommendations