Lipopolysaccharide-Induced Striatal Nitrosative Stress and Impaired Social Recognition Memory Are Not Magnified by Paraquat Coexposure


Systemic inflammation triggered by lipopolysaccharide (LPS) administration disrupts blood–brain barrier (BBB) homeostasis in animal models. This event leads to increased susceptibility of several encephalic structures to potential neurotoxicants present in the bloodstream. In this study, we investigated the effects of alternate intraperitoneal injections of LPS on BBB permeability, social recognition memory and biochemical parameters in the striatum 24 h and 60 days after treatments. In addition, we investigated whether the exposure to a moderate neurotoxic dose of the herbicide paraquat could potentiate LPS-induced neurotoxicity. LPS administration caused a transient disruption of BBB integrity, evidenced by increased levels of exogenously administered sodium fluorescein in the striatum. Also, LPS exposure caused delayed impairment in social recognition memory (evaluated at day 38 after treatments) and increase in the striatal levels of 3-nitrotyrosine. These events were observed in the absence of significant changes in motor coordination and in the levels of tyrosine hydroxylase (TH) in the striatum and substantia nigra. PQ exposure, which caused a long-lasting decrease of striatal mitochondrial complex I activity, did not modify LPS-induced behavioral and striatal biochemical changes. The results indicate that systemic administration of LPS causes delayed social recognition memory deficit and striatal nitrosative stress in adult mice and that the coexposure to a moderately toxic dose of PQ did not magnify these events. In addition, PQ-induced inhibition of striatal mitochondrial complex I was also not magnified by LPS exposure, indicating the absence of synergic neurotoxic effects of LPS and PQ in this experimental model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, Engelhardt B, Hallenbeck JM, Lonser RR, Ohlfest JR, Prat A, Scarpa M, Smeyne RJ, Drewes LR, Neuwelt EA (2013) Immunologic privilege in the central nervous system and the blood–brain barrier. J Cereb Blood Flow Metab 33(1):13–21.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Scaini G, Morais MO, Galant LS, Vuolo F, Dall’Igna DM, Pasquali MA, Ramos VM, Gelain DP, Moreira JC, Schuck PF, Ferreira GC, Soriano FG, Dal-Pizzol F, Streck EL (2014) Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood–brain barrier breakdown. Mol Neurobiol 50(2):358–367.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Banks WA, Kastin AJ, Brennan JM, Vallance KL (1999) Adsorptive endocytosis of HIV-1gp120 by blood–brain barrier is enhanced by lipopolysaccharide. Exp Neurol 156(1):165–171.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Eckman PL, King WM, Brunson JG (1958) Studies on the blood–brain barrier. I. Effects produced by a single injection of gramnegative endotoxin on the permeability of the cerebral vessels. Am J Pathol 34(4):631–643

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Pan W, Yu C, Hsuchou H, Zhang Y, Kastin AJ (2008) Neuroinflammation facilitates LIF entry into brain: role of TNF. Am J Physiol Cell Physiol 294(6):C1436-1442.

    CAS  Article  Google Scholar 

  6. 6.

    Xaio H, Banks WA, Niehoff ML, Morley JE (2001) Effect of LPS on the permeability of the blood–brain barrier to insulin. Brain Res 896(1–2):36–42

    CAS  Article  Google Scholar 

  7. 7.

    He Q, Yu W, Wu J, Chen C, Lou Z, Zhang Q, Zhao J, Wang J, Xiao B (2013) Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS ONE 8(11):e78418.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Herrera AJ, Castano A, Venero JL, Cano J, Machado A (2000) The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7(4):429–447.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25(39):8843–8853.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Tomas-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL (2004) Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood–brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 16(1):190–201.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Goldeck D, Maetzler W, Berg D, Oettinger L, Pawelec G (2016) Altered dendritic cell subset distribution in patients with Parkinson’s disease: Impact of CMV serostatus. J Neuroimmunol 290:60–65.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Pradhan S, Pandey N, Shashank S, Gupta RK, Mathur A (1999) Parkinsonism due to predominant involvement of substantia nigra in Japanese encephalitis. Neurology 53(8):1781–1786

    CAS  Article  Google Scholar 

  14. 14.

    Bu XL, Yao XQ, Jiao SS, Zeng F, Liu YH, Xiang Y, Liang CR, Wang QH, Wang X, Cao HY, Yi X, Deng B, Liu CH, Xu J, Zhang LL, Gao CY, Xu ZQ, Zhang M, Wang L, Tan XL, Xu X, Zhou HD, Wang YJ (2015) A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol 22(12):1519–1525.

    Article  PubMed  Google Scholar 

  15. 15.

    Liu B, Gao HM, Hong JS (2003) Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ Health Perspect 111(8):1065–1073

    CAS  Article  Google Scholar 

  16. 16.

    Grant H, Lantos PL, Parkinson C (1980) Cerebral damage in paraquat poisoning. Histopathology 4(2):185–195

    CAS  Article  Google Scholar 

  17. 17.

    Liou HH, Chen RC, Tsai YF, Chen WP, Chang YC, Tsai MC (1996) Effects of paraquat on the substantia nigra of the wistar rats: neurochemical, histological, and behavioral studies. Toxicol Appl Pharmacol 137(1):34–41.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Pezzoli G, Cereda E (2013) Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 80(22):2035–2041.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA (2000) Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson’s disease? Brain Res 873(2):225–234

    CAS  Article  Google Scholar 

  20. 20.

    Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson’s disease. J Neurosci 20(24):9207–9214

    CAS  Article  Google Scholar 

  21. 21.

    Thiruchelvam M, Richfield EK, Goodman BM, Baggs RB, Cory-Slechta DA (2002) Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype. Neurotoxicology 23(4–5):621–633

    CAS  Article  Google Scholar 

  22. 22.

    Carvey PM, Punati A, Newman MB (2006) Progressive dopamine neuron loss in Parkinson’s disease: the multiple hit hypothesis. Cell Transplant 15(3):239–250

    Article  Google Scholar 

  23. 23.

    Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA (2007) Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 25(2):392–400.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8(11):889–895.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shimojima N, Eckman CB, McKinney M, Sevlever D, Yamamoto S, Lin W, Dickson DW, Nguyen JH (2008) Altered expression of zonula occludens-2 precedes increased blood-brain barrier permeability in a murine model of fulminant hepatic failure. J Invest Surg 21(3):101–108.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gasparotto J, Ribeiro CT, Bortolin RC, Somensi N, Fernandes HS, Teixeira AA, Guasselli MOR, Agani C, Souza NC, Grings M, Leipnitz G, Gomes HM, de Bittencourt Pasquali MA, Dunkley PR, Dickson PW, Moreira JCF, Gelain DP (2017) Anti-RAGE antibody selectively blocks acute systemic inflammatory responses to LPS in serum, liver, CSF and striatum. Brain Behav Immun 62:124–136.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Castro AA, Ghisoni K, Latini A, Quevedo J, Tasca CI, Prediger RD (2012) Lithium and valproate prevent olfactory discrimination and short-term memory impairments in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rat model of Parkinson’s disease. Behav Brain Res 229(1):208–215.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Jiang C, Wan X, Jankovic J, Christian ST, Pristupa ZB, Niznik HB, Sundsmo JS, Le W (2004) Dopaminergic properties and experimental anti-parkinsonian effects of IPX750 in rodent models of Parkinson disease. Clin Neuropharmacol 27(2):63–73

    CAS  Article  Google Scholar 

  29. 29.

    Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E (2009) Mouse closed head injury model induced by a weight-drop device. Nat Protoc 4(9):1328–1337.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Schwarzbold ML, Rial D, De Bem T, Machado DG, Cunha MP, dos Santos AA, dos Santos DB, Figueiredo CP, Farina M, Goldfeder EM, Rodrigues AL, Prediger RD, Walz R (2010) Effects of traumatic brain injury of different severities on emotional, cognitive, and oxidative stress-related parameters in mice. J Neurotrauma 27(10):1883–1893.

    Article  PubMed  Google Scholar 

  31. 31.

    Dantzer R, Bluthe RM, Koob GF, Le Moal M (1987) Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology 91(3):363–368

    CAS  Article  Google Scholar 

  32. 32.

    Prediger RD, Batista LC, Miyoshi E, Takahashi RN (2004) Facilitation of short-term social memory by ethanol in rats is mediated by dopaminergic receptors. Behav Brain Res 153(1):149–157.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Latini A, da Silva CG, Ferreira GC, Schuck PF, Scussiato K, Sarkis JJ, Dutra Filho CS, Wyse AT, Wannmacher CM, Wajner M (2005) Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab 86(1–2):188–199.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    CAS  Article  Google Scholar 

  35. 35.

    Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    CAS  Article  Google Scholar 

  36. 36.

    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    CAS  Article  Google Scholar 

  37. 37.

    Aebi H, Wyss SR, Scherz B, Skvaril F (1974) Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem 48(1):137–145

    CAS  Article  Google Scholar 

  38. 38.

    Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328(2):309–316.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153(1):23–36

    CAS  Article  Google Scholar 

  40. 40.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  41. 41.

    McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10(2):119–127

    CAS  Article  Google Scholar 

  42. 42.

    Ossowska K, Wardas J, Smialowska M, Kuter K, Lenda T, Wieronska JM, Zieba B, Nowak P, Dabrowska J, Bortel A, Kwiecinski A, Wolfarth S (2005) A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: an animal model of preclinical stages of Parkinson’s disease? Eur J Neurosci 22(6):1294–1304.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Tinakoua A, Bouabid S, Faggiani E, De Deurwaerdere P, Lakhdar-Ghazal N, Benazzouz A (2015) The impact of combined administration of paraquat and maneb on motor and non-motor functions in the rat. Neuroscience 311:118–129.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823(1–2):1–10

    CAS  Article  Google Scholar 

  45. 45.

    Choi HS, An JJ, Kim SY, Lee SH, Kim DW, Yoo KY, Won MH, Kang TC, Kwon HJ, Kang JH, Cho SW, Kwon OS, Park J, Eum WS, Choi SY (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic Biol Med 41(7):1058–1068.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Fernagut PO, Hutson CB, Fleming SM, Tetreaut NA, Salcedo J, Masliah E, Chesselet MF (2007) Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. Synapse 61(12):991–1001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK (2007) Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerate age-related neurodegeneration. J Neurosci 27(26):6914–6922.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Clement HW, Vazquez JF, Sommer O, Heiser P, Morawietz H, Hopt U, Schulz E, von Dobschutz E (2010) Lipopolysaccharide-induced radical formation in the striatum is abolished in Nox2 gp91phox-deficient mice. J Neural Transm 117(1):13–22.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Baez-Mendoza R, Schultz W (2013) The role of the striatum in social behavior. Front Neurosci 7:233.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Sunday L, Tran MM, Krause DN, Duckles SP (2006) Estrogen and progestagens differentially modulate vascular proinflammatory factors. Am J Physiol Endocrinol Metab 291(2):E261–E267.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Evans T, Carpenter A, Cohen J (1994) Inducible nitric-oxide-synthase mRNA is transiently expressed and destroyed by a cycloheximide-sensitive process. Eur J Biochem 219(1–2):563–569

    CAS  Article  Google Scholar 

  52. 52.

    Yao SY, Natarajan C, Sriram S (2012) nNOS mediated mitochondrial injury in LPS stimulated oligodendrocytes. Mitochondrion 12(2):336–344.

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38(3–4):277–301

    CAS  Article  Google Scholar 

  54. 54.

    Willard AM, Bouchard RS, Gittis AH (2015) Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice. Neuroscience 301:254–267.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Heredia L, Belles M, Llovet MI, Domingo JL, Linares V (2015) Neurobehavioral effects of concurrent exposure to cesium-137 and paraquat during neonatal development in mice. Toxicology 329:73–79.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Lou D, Wang Q, Huang M, Zhou Z (2016) Does age matter? Comparison of neurobehavioral effects of paraquat exposure on postnatal and adult C57BL/6 mice. Toxicol Mech Methods 26(9):667–673.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Czerniczyniec A, Karadayian AG, Bustamante J, Cutrera RA, Lores-Arnaiz S (2011) Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction. Free Radic Biol Med 51(7):1428–1436.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Tawara T, Fukushima T, Hojo N, Isobe A, Shiwaku K, Setogawa T, Yamane Y (1996) Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol 70(9):585–589

    CAS  Article  Google Scholar 

  59. 59.

    Mangano EN, Hayley S (2009) Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: Neuroimmune sensitization of neurodegeneration. Neurobiol Aging 30(9):1361–1378.

    CAS  Article  PubMed  Google Scholar 

Download references


The authors gratefully thank the financial support and grants provided by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (especially project 300966/2014-8) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information



Corresponding authors

Correspondence to CinaraLudvig Gonçalves or Marcelo Farina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, C., dos Santos, D.B., Portilho, S.S. et al. Lipopolysaccharide-Induced Striatal Nitrosative Stress and Impaired Social Recognition Memory Are Not Magnified by Paraquat Coexposure. Neurochem Res 43, 745–759 (2018).

Download citation


  • Lipopolysaccharide
  • Paraquat
  • Neurotoxicity
  • blood–brain barrier
  • Social recognition memory
  • Striatum