Skip to main content

Advertisement

Log in

Gartanin Protects Neurons against Glutamate-Induced Cell Death in HT22 Cells: Independence of Nrf-2 but Involvement of HO-1 and AMPK

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress mediates the pathogenesis of neurodegenerative disorders. Gartanin, a natural xanthone of mangosteen, possesses multipharmacological activities. Herein, the neuroprotection capacity of gartanin against glutamate-induced damage in HT22 cells and its possible mechanism(s) were investigated for the first time. Glutamate resulted in cell death in a dose-dependent manner and supplementation of 1–10 µM gartanin prevented the detrimental effects of glutamate on cell survival. Additional investigations on the underlying mechanisms suggested that gartanin could effectively reduce glutamate-induced intracellular ROS generation and mitochondrial depolarization. We further found that gartanin induced HO-1 expression independent of nuclear factor erythroid-derived 2-like 2 (Nrf2). Subsequent studies revealed that the inhibitory effects of gartanin on glutamate-induced apoptosis were partially blocked by small interfering RNA-mediated knockdown of HO-1. Finally, the protein expression of phosphorylation of AMP-activated protein kinase (AMPK) and its downstream signal molecules, Sirtuin activator (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), increased after gartanin treatment. Taken together, these findings suggest gartanin is a potential neuroprotective agent against glutamate-induced oxidative injury partially through increasing Nrf-2-independed HO-1 and AMPK/SIRT1/PGC-1α signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

ROS:

Reactive oxygen species

ΔΨm:

Mitochondrial membrane potential

HO-1:

Heme oxygenase 1

Nrf-2:

Nuclear factor erythroid-derived 2-like 2

AMPK:

AMP-activated protein kinase

H2DCF-DA:

H2DCF-DA dichlorodihydrofluorescein diacetate

DHE:

Dihydroethidium

R123:

Rhodamine 123

siRNA:

Small interfering RNA

LC3:

Microtubule-associated protein light chain 3

PPARα:

Peroxisome proliferator-activated receptor α

SIRT1:

Sirtuin activator 1

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α

References

  1. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    Article  CAS  PubMed  Google Scholar 

  2. Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287(2):C246–C256

    Article  CAS  PubMed  Google Scholar 

  3. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. JAD 42(Suppl 3):S125–S152

    PubMed  Google Scholar 

  4. Pita-Almenar JD, Collado MS, Colbert CM, Eskin A (2006) Different mechanisms exist for the plasticity of glutamate reuptake during early long-term potentiation (LTP) and late LTP. J Neurosci 26(41):10461–10471

    Article  CAS  PubMed  Google Scholar 

  5. Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33(8):1351–1365

    Article  PubMed  Google Scholar 

  6. Rudy CC, Hunsberger HC, Weitzner DS, Reed MN (2015) The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer’s disease. Aging Dis 6(2):131–148

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gardoni F, Bellone C (2015) Modulation of the glutamatergic transmission by dopamine: a focus on Parkinson, Huntington and Addiction diseases. Front Cell Neurosci 9:25

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate-induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91

    Article  PubMed  PubMed Central  Google Scholar 

  9. Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2(6):1547–1558

    Article  CAS  PubMed  Google Scholar 

  10. Davis JB, Maher P (1994) Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res 652(1):169–173

    Article  CAS  PubMed  Google Scholar 

  11. Tan S, Wood M, Maher P (1998) Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J Neurochem 71(1):95–105

    Article  CAS  PubMed  Google Scholar 

  12. van Leyen K, Siddiq A, Ratan RR, Lo EH (2005) Proteasome inhibition protects HT22 neuronal cells from oxidative glutamate toxicity. J Neurochem 92(4):824–830

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen J, Chua KW, Chua CC, Yu H, Pei A, Chua BH, Hamdy RC, Xu X, Liu CF (2011) Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci Lett 499(3):181–185

    Article  CAS  PubMed  Google Scholar 

  14. Poteet E, Winters A, Yan LJ, Shufelt K, Green KN, Simpkins JW, Wen Y, Yang SH (2012) Neuroprotective actions of methylene blue and its derivatives. PLoS ONE 7(10):e48279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chao XJ, Chen ZW, Liu AM, He XX, Wang SG, Wang YT, Liu PQ, Ramassamy C, Mak SH, Cui W, Kong AN, Yu ZL, Han YF, Pi RB (2014) Effect of tacrine-3-caffeic acid, a novel multifunctional anti-Alzheimer’s dimer, against oxidative-stress-induced cell death in HT22 hippocampal neurons: involvement of Nrf2/HO-1 pathway. CNS Neurosci Ther 20(9):840–850

    Article  CAS  PubMed  Google Scholar 

  16. Bramanti V, Grasso S, Tomassoni D, Traini E, Raciti G, Viola M, Li Volti G, Campisi A, Amenta F, Avola R (2015) Effect of growth factors and steroid hormones on heme oxygenase and cyclin D1 expression in primary astroglial cell cultures. J Neurosci Res 93(3):521–529

    Article  CAS  PubMed  Google Scholar 

  17. Shibahara S, Yoshizawa M, Suzuki H, Takeda K, Meguro K, Endo K (1993) Functional analysis of cDNAs for two types of human heme oxygenase and evidence for their separate regulation. J Biochem 113(2):214–218

    CAS  PubMed  Google Scholar 

  18. Abraham NG, Lin JH, Schwartzman ML, Levere RD, Shibahara S (1988) The physiological significance of heme oxygenase. Int J Biochem 20(6):543–558

    Article  CAS  PubMed  Google Scholar 

  19. Li Volti G, Murabito P (2014) Pharmacologic induction of heme oxygenase-1: it is time to take it seriously*. Crit Care Med 42(8):1967–1968

    Article  PubMed  Google Scholar 

  20. Kushida T, Li Volti G, Quan S, Goodman A, Abraham NG (2002) Role of human heme oxygenase-1 in attenuating TNF-alpha-mediated inflammation injury in endothelial cells. J Cell Biochem 87(4):377–385

    Article  CAS  PubMed  Google Scholar 

  21. Bramanti V, Tomassoni D, Grasso S, Bronzi D, Napoli M, Campisi A, Li Volti G, Ientile R, Amenta F, Avola R (2012) Cholinergic precursors modulate the expression of heme oxigenase-1, p21 during astroglial cell proliferation and differentiation in culture. Neurochem Res 37(12):2795–2804

    Article  CAS  PubMed  Google Scholar 

  22. Tang GH, Chen ZW, Lin TT, Tan M, Gao XY, Bao JM, Cheng ZB, Sun ZH, Huang G, Yin S (2015) Neolignans from Aristolochia fordiana prevent oxidative stress-induced neuronal death through maintaining the Nrf2/HO-1 pathway in HT22 Cells. J Nat Prod 78(8):1894–1903

    Article  CAS  PubMed  Google Scholar 

  23. Lee DS, Cha BY, Woo JT, Kim YC, Jang JH (2015) Acerogenin A from Acer nikoense maxim prevents oxidative stress-induced neuronal cell death through Nrf2-mediated heme oxygenase-1 expression in mouse hippocampal HT22 cell line. Molecules (Basel, Switzerland) 20(7):12545–12557

  24. Park SY, Jin ML, Kim YH, Kim CM, Lee SJ, Park G (2014) Involvement of heme oxygenase-1 in neuroprotection by sanguinarine against glutamate-triggered apoptosis in HT22 neuronal cells. Environ Toxicol Pharmacol 38(3):701–710

    Article  CAS  PubMed  Google Scholar 

  25. Son Y, Byun SJ, Pae HO (2013) Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells. Amino Acids 45(2):393–401

    Article  CAS  PubMed  Google Scholar 

  26. Wang R, Yan H, Tang XC (2006) Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27(1):1–26

    Article  PubMed  Google Scholar 

  27. Wu TY, Chen CP, Jinn TR (2011) Traditional Chinese medicines and Alzheimer’s disease. Taiwan J Obstet Gynecol 50(2):131–135

    Article  PubMed  Google Scholar 

  28. Kim HG, Oh MS (2012) Herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr Pharm Des 18(1):57–75

    Article  CAS  PubMed  Google Scholar 

  29. Liu QY, Wang YT, Lin LG (2015) New insights into the anti-obesity activity of xanthones from Garcinia mangostana. Food Funct 6(2):383–393

    Article  CAS  PubMed  Google Scholar 

  30. Chin YW, Kinghorn AD (2008) Structural characterization, biological effects, and synthetic studies on xanthones from mangosteen (Garcinia mangostana), a popular botanical dietary supplement. Mini Rev Org Chem 5(4):355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cui J, Hu W, Cai Z, Liu Y, Li S, Tao W, Xiang H (2010) New medicinal properties of mangostins: analgesic activity and pharmacological characterization of active ingredients from the fruit hull of Garcinia mangostana L. Pharmacol Biochem Behav 95(2):166–172

    Article  CAS  PubMed  Google Scholar 

  32. Li G, Thomas S, Johnson JJ (2013) Polyphenols from the mangosteen (Garcinia mangostana) fruit for breast and prostate cancer. Front Pharmacol 4:80

    PubMed  PubMed Central  Google Scholar 

  33. Obolskiy D, Pischel I, Siriwatanametanon N, Heinrich M (2009) Garcinia mangostana L.: a phytochemical and pharmacological review. PTR 23(8):1047–1065

    CAS  PubMed  Google Scholar 

  34. Gutierrez-Orozco F, Failla ML (2013) Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence. Nutrients 5(8):3163–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pedraza-Chaverri J, Cardenas-Rodriguez N, Orozco-Ibarra M, Perez-Rojas JM (2008) Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol 46(10):3227–3239

    Article  CAS  PubMed  Google Scholar 

  36. Quan GH, Oh SR, Kim JH, Lee HK, Kinghorn AD, Chin YW (2010) Xanthone constituents of the fruits of Garcinia mangostana with anticomplement activity. PTR 24(10):1575–1577

    CAS  PubMed  Google Scholar 

  37. Shan T, Ma Q, Guo K, Liu J, Li W, Wang F, Wu E (2011) Xanthones from mangosteen extracts as natural chemopreventive agents: potential anticancer drugs. Curr Mol Med 11(8):666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Govindachari TR, Kalyanaraman PS, Muthukumaraswamy N, Pai BR (1971) Xanthones of Garcinia mangostana Linn. Tetrahedron 27(16):3919–3926

    Article  CAS  Google Scholar 

  39. Xu Z, Huang L, Chen XH, Zhu XF, Qian XJ, Feng GK, Lan WJ, Li HJ (2014) Cytotoxic prenylated xanthones from the pericarps of Garcinia mangostana. Molecules (Basel, Switzerland) 19(2):1820–1827

  40. Liu Z, Antalek M, Nguyen L, Li X, Tian X, Le A, Zi X (2013) The effect of gartanin, a naturally occurring xanthone in mangosteen juice, on the mTOR pathway, autophagy, apoptosis, and the growth of human urinary bladder cancer cell lines. Nutr Cancer 65(Suppl 1):68–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jung HA, Su BN, Keller WJ, Mehta RG, Kinghorn AD (2006) Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J Agric Food Chem 54(6):2077–2082

    Article  CAS  PubMed  Google Scholar 

  42. Cosentino K, Garcia-Saez AJ (2014) Mitochondrial alterations in apoptosis. Chem Phys Lipids 181:62–75

    Article  CAS  PubMed  Google Scholar 

  43. Fukui M, Song JH, Choi J, Choi HJ, Zhu BT (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 617(1–3):1–11

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Davies KJ, Forman HJ (2015) Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 88:314–3336

    Article  CAS  PubMed  Google Scholar 

  45. Aukkanimart R, Boonmars T, Sriraj P, Songsri J, Laummaunwai P, Waraasawapati S, Boonyarat C, Rattanasuwan P, Boonjaraspinyo S (2015) Anthelmintic, anti-inflammatory and antioxidant effects of Garcinia mangostana extract in hamster opisthorchiasis. Exp Parasitol 154:5–13

    Article  CAS  PubMed  Google Scholar 

  46. Suttirak W, Manurakchinakorn S (2014) In vitro antioxidant properties of mangosteen peel extract. J Food Sci Technol 51(12):3546–3558

    Article  CAS  PubMed  Google Scholar 

  47. Xie Z, Sintara M, Chang T, Ou B (2015) Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults. Food Sci Nutr 3(1):32–38

    Article  CAS  PubMed  Google Scholar 

  48. Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22(53):8590–8607

    Article  CAS  PubMed  Google Scholar 

  49. Dargusch R, Piasecki D, Tan S, Liu Y, Schubert D (2001) The role of Bax in glutamate-induced nerve cell death. J Neurochem 76(1):295–301

    Article  CAS  PubMed  Google Scholar 

  50. Lim JL, Wilhelmus MM, de Vries HE, Drukarch B, Hoozemans JJ, van Horssen J (2014) Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases. Arch Toxicol 88(10):1773–1786

    Article  CAS  PubMed  Google Scholar 

  51. Chen J (2014) Heme oxygenase in neuroprotection: from mechanisms to therapeutic implications. Rev Neurosci 25(2):269–280

    Article  CAS  PubMed  Google Scholar 

  52. Kang J, Jeong MG, Oh S, Jang EJ, Kim HK, Hwang ES (2014) A FoxO1-dependent, but NRF2-independent induction of heme oxygenase-1 during muscle atrophy. FEBS Lett 588(1):79–85

    Article  CAS  PubMed  Google Scholar 

  53. Kronke G, Kadl A, Ikonomu E, Bluml S, Furnkranz A, Sarembock IJ, Bochkov VN, Exner M, Binder BR, Leitinger N (2007) Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol 27(6):1276–1282

    Article  PubMed  Google Scholar 

  54. Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S (2009) AMPK in the brain: its roles in energy balance and neuroprotection. J Neurochem 109(Suppl 1):17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feige JN, Auwerx J (2007) Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol 17(6):292–301

    Article  CAS  PubMed  Google Scholar 

  56. Jager S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104(29):12017–12022

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dagon Y, Avraham Y, Magen I, Gertler A, Ben-Hur T, Berry EM (2005) Nutritional status, cognition, and survival: a new role for leptin and AMP kinase. J Biol Chem 280(51):42142–42148

    Article  CAS  PubMed  Google Scholar 

  58. Zrelli H, Matsuoka M, Kitazaki S, Zarrouk M, Miyazaki H (2011) Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK-FOXO3a pathway. Eur J Pharmacol 660(2–3):275–282

    Article  CAS  PubMed  Google Scholar 

  59. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    Article  CAS  PubMed  Google Scholar 

  60. Amato S, Man HY (2011) Bioenergy sensing in the brain: the role of AMP-activated protein kinase in neuronal metabolism, development and neurological diseases. Cell Cycle 10(20):3452–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weisova P, Davila D, Tuffy LP, Ward MW, Concannon CG, Prehn JH (2011) Role of 5′-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons. Antioxid Redox Signal 14(10):1863–1876

    Article  CAS  PubMed  Google Scholar 

  62. Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118(4):460–474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Guangdong Provincial International Cooperation Project of Science & Technology (No. 2013B051000038), National Natural Science Foundation of China (No. 31371070) and the Fundamental Research Funds for the Central Universities (No. 15ykjc08b) to R. Pi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-bo Yang.

Ethics declarations

Conflict of interest

All other authors declare no conflict of interest.

Additional information

Xiao-yun Gao, Sheng-nan Wang, Xiao-hong Yang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Xy., Wang, Sn., Yang, Xh. et al. Gartanin Protects Neurons against Glutamate-Induced Cell Death in HT22 Cells: Independence of Nrf-2 but Involvement of HO-1 and AMPK. Neurochem Res 41, 2267–2277 (2016). https://doi.org/10.1007/s11064-016-1941-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1941-x

Keywords

Navigation