Skip to main content
Log in

Histone Acetylation Regulation in Sleep Deprivation-Induced Spatial Memory Impairment

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sleep disorders negatively affect cognition and health. Recent evidence has indicated that chromatin remodeling via histone acetylation regulates cognitive function. This study aimed to investigate the possible roles of histone acetylation in sleep deprivation (SD)-induced cognitive impairment. Results of the Morris water maze test showed that 3 days of SD can cause spatial memory impairment in Wistar rats. SD can also decrease histone acetylation levels, increase histone deacetylase 2 (HDAC2) expression, and decrease histone acetyltransferase (CBP) expression. Furthermore, SD can reduce H3 and H4 acetylation levels in the promoters of the brain-derived neurotrophic factor (Bdnf) gene and thus significantly downregulate BDNF expression and impair the activity of key BDNF signaling pathways (pCaMKII, pErk2, and pCREB). However, treatment with the HDAC inhibitor trichostatin A attenuated all the negative effects induced by SD. Therefore, BDNF and its histone acetylation regulation may play important roles in SD-induced spatial memory impairment, whereas HDAC inhibition possibly confers protection against SD-induced impairment in spatial memory and hippocampal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Devnani P, Fernandes R (2015) Management of REM sleep behavior disorder: an evidence based review. Ann Indian Acad Neurol 18(1):1–5

    PubMed  PubMed Central  Google Scholar 

  2. Luyster F, Strollo P, Zee P et al (2012) Sleep: a health imperative. Sleep 35(6):727–734

    Article  PubMed  PubMed Central  Google Scholar 

  3. Busch V, Haas J, Crönlein T et al (2012) Sleep deprivation in chronic somatoform pain—effects on mood and pain regulation. Psychiatry Res 195(3):134–143

    Article  PubMed  Google Scholar 

  4. Motomura Y, Kitamura S, Oba K et al (2013) Sleep debt elicits negative emotional reaction through diminished amygdala-anterior cingulate functional connectivity. PLoS ONE 8(2):e56578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carskadon MA (2011) Sleep’s effects on cognition and learning in adolescence. Prog Brain Res 190:137–143

    Article  PubMed  Google Scholar 

  6. Fullagar HH, Skorski S, Duffield R et al (2015) Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Med 45(2):161–186

    Article  PubMed  Google Scholar 

  7. Tartar JL, Ward CP, McKenna JT et al (2006) Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci 23(10):2739–2748

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vecsey CG, Baillie GS, Jaganath D et al (2009) Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461(7267):1122–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borragán G, Urbain C, Schmitz R et al (2015) Sleep and memory consolidation: motor performance and proactive interference effects in sequence learning. Brain Cognit 95:54–61

    Article  Google Scholar 

  10. Fernandes-Santos L, Patti CL, Zanin KA et al (2012) Sleep deprivation impairs emotional memory retrieval in mice: influence of sex. Prog Neurol Psychopharmacol Biol Psychiatry 38(2):216–222

    Article  Google Scholar 

  11. Hagewoud R, Havekes R, Novati A et al (2010) Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. J Sleep Res 19(2):280–288

    Article  PubMed  Google Scholar 

  12. Vollert C, Zagaar M, Hovatta I et al (2011) Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav Brain Res 224(2):233–240

    Article  CAS  PubMed  Google Scholar 

  13. Silva RH, Kameda SR, Carvalho RC et al (2004) Anxiogenic effect of sleep deprivation in the elevated plus-maze test in mice. Psychopharmacology (Berlin) 176(2):115–122

    Article  CAS  Google Scholar 

  14. Campbell I, Guinan M, Horowitz J (2002) Sleep deprivation impairs long-term potentiation in rat hippocampal slices. J Neurophysiol 88(2):1073–1076

    CAS  PubMed  Google Scholar 

  15. Fu J, Li P, Ouyang X et al (2007) Rapid eye movement sleep deprivation selectively impairs recall of fear extinction in hippocampus-independent tasks in rats. Neuroscience 144(4):1186–1192

    Article  CAS  PubMed  Google Scholar 

  16. Prince TM, Abel T (2013) The impact of sleep loss on hippocampal function. Learn Mem 20(10):558–569

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6(2):108–118

    Article  CAS  PubMed  Google Scholar 

  18. Jarome TJ, Lubin FD (2014) Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol Learn Mem 115:116–127

    Article  CAS  PubMed  Google Scholar 

  19. Frick KM (2013) Epigenetics, oestradiol and hippocampal memory consolidation. J Neuroendocrinol 25(11):1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneider A, Chatterjee S, Bousiges O et al (2013) Acetyltransferases (HATs) as targets for neurological therapeutics. Neurotherapeutics 10(4):568–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peserico A, Simone C (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011:371832

    Article  PubMed  Google Scholar 

  22. Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13(4):539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guan JS, Haggarty SJ, Giacometti E et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243):55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morris MJ, Mahgoub M, Na ES et al (2013) Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 33(15):6401–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanson JE, Deng L, Hackos DH et al (2013) Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons. J Neurosci 33(14):5924–5929

    Article  CAS  PubMed  Google Scholar 

  27. McQuown SC, Barrett RM, Matheos DP et al (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31(2):764–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stefanko DP, Barrett RM, Ly AR et al (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci USA 106(23):9447–9452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim MS, Akhtar MW, Adachi M et al (2012) An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci 32(32):10879–10886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agis-Balboa RC, Pavelka Z, Kerimoglu C et al (2013) Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J Alzheimers Dis 33(1):35–44

    CAS  PubMed  Google Scholar 

  31. Govindarajan N, Rao P, Burkhardt S et al (2013) Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med 5(1):52–63

    Article  CAS  PubMed  Google Scholar 

  32. Bahari-Javan S, Maddalena A, Kerimoglu C et al (2012) HDAC1 regulates fear extinction in mice. J Neurosci 32(15):5062–5073

    Article  CAS  PubMed  Google Scholar 

  33. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577

    CAS  PubMed  Google Scholar 

  34. Saadati H, Esmaeili-Mahani S, Esmaeilpour K et al (2015) Exercise improves learning and memory impairments in sleep deprived female rats. Physiol Behav 138:285–291

    Article  CAS  PubMed  Google Scholar 

  35. Salari M, Sheibani V, Saadati H et al (2015) The compensatory effect of regular exercise on long-term memory impairment in sleep deprived female rats. Behav Process 119:50–57

    Article  Google Scholar 

  36. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  37. Martinowich K, Hattori D, Wu H et al (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646):890–893

    Article  CAS  PubMed  Google Scholar 

  38. Tsankova NM, Kumar A, Nestler EJ (2004) Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 24(24):5603–5610

    Article  CAS  PubMed  Google Scholar 

  39. Tsankova NM, Berton O, Renthal W et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9(4):519–525

    Article  CAS  PubMed  Google Scholar 

  40. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10(12):850–860

    Article  CAS  PubMed  Google Scholar 

  41. Zeng Y, Zhao D, Xie CW (2010) Neurotrophins enhance CaMKII activity and rescue amyloid-beta-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis 21(3):823–831

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fischer A, Sananbenesi F, Wang X et al (2007) Recovery of learning and memory is associated with chromatin remodeling. Nature 447(7141):178–182

    Article  CAS  PubMed  Google Scholar 

  43. Vecsey CG, Hawk JD, Lattal KM et al (2007) Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation. J Neurosci 27(23):6128–6140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gräff J, Tsai LH (2013) The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 53:311–330

    Article  PubMed  Google Scholar 

  45. Grønli J, Soulé J, Bramham CR (2014) Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 7:224

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guzman-Marin R, Ying Z, Suntsova N et al (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 575(Pt 3):807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Timmusk T, Palm K, Metsis M et al (1993) Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 10(3):475–489

    Article  CAS  PubMed  Google Scholar 

  48. Metsis M, Timmusk T, Arenas E et al (1993) Differential usage of multiple brain-derived neurotrophic factor promoters in the rat brain following neuronal activation. Proc Natl Acad Sci USA 90(19):8802–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alhaider IA, Aleisa AM, Tran TT et al (2011) Sleep deprivation prevents stimulation-induced increases of levels of P-CREB and BDNF: protection by caffeine. Mol Cell Neurosci 46(4):742–751

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81302415) and the Tianjin Natural Science Foundation (No. 12JCYBJC15800). The authors declare no conflicts of interest in this manuscript.

Author Contributions

Z.Z. conceived the study and designed the experiments. L.W. performed the cognition function detection and analysis. R.D. and X.L. performed the ChIP assay. T.W. and X.G. performed all other experiments. The manuscript was written by R.D. and Z.Z. and reviewed and approved by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqing Zhang.

Additional information

Ruifeng Duan, Xiaohua Liu and Tianhui Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, R., Liu, X., Wang, T. et al. Histone Acetylation Regulation in Sleep Deprivation-Induced Spatial Memory Impairment. Neurochem Res 41, 2223–2232 (2016). https://doi.org/10.1007/s11064-016-1937-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1937-6

Keywords

Navigation