Neurochemical Research

, Volume 41, Issue 6, pp 1354–1364 | Cite as

Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons

  • Mingyue Qu
  • Zheng Jiang
  • Yuanxiang Liao
  • Zhenyao Song
  • Xinzhong Nan
Original Paper


Brains affected by Alzheimer’s disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.


Alzheimer’s disease β-Amyloid Lycopene Mitochondria Neurons 



Alzheimer’s disease



Reactive oxygen species


Mitochondrial DNA


Mitochondrial permeability transition pores


Dichlorofluorescin diacetate


Normalized relative fluorescence units




Butylated hydroxytoluene


Cytochrome c oxidase subunit I


Cytochrome c oxidase subunit IV


NADH dehydrogenase subunit 6


Glyceraldehyde-3-phosphate dehydrogenase



We are particularly grateful to Dr. Fanzheng Yang (Central university of Finance and Economics) for her critical review and valuable suggestions that improved the quality of this manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhu X, Perry G, Smith MA, Wang X (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S253–S262. doi: 10.3233/JAD-2012-129005 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Spuch C, Ortolano S, Navarro C (2012) New insights in the amyloid-beta interaction with mitochondria. J Aging Res 2012:324968. doi: 10.1155/2012/324968 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15(9):1437–1449. doi: 10.1093/hmg/ddl066 CrossRefPubMedGoogle Scholar
  4. 4.
    Du H, Yan SS (2010) Mitochondrial permeability transition pore in Alzheimer’s disease: cyclophilin D and amyloid beta. Biochim Biophys Acta 1802(1):198–204. doi: 10.1016/j.bbadis.2009.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pinto M, Pickrell AM, Fukui H, Moraes CT (2013) Mitochondrial DNA damage in a mouse model of Alzheimer’s disease decreases amyloid beta plaque formation. Neurobiol Aging 34(10):2399–2407. doi: 10.1016/j.neurobiolaging.2013.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309(5733):481–484. doi: 10.1126/science.1112125 CrossRefPubMedGoogle Scholar
  7. 7.
    Sandhir R, Mehrotra A, Kamboj SS (2010) Lycopene prevents 3-nitropropionic acid-induced mitochondrial oxidative stress and dysfunctions in nervous system. Neurochem Int 57(5):579–587. doi: 10.1016/j.neuint.2010.07.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Kaur H, Chauhan S, Sandhir R (2011) Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease. Neurochem Res 36(8):1435–1443. doi: 10.1007/s11064-011-0469-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Prema A, Janakiraman U, Manivasagam T, Thenmozhi AJ (2015) Neuroprotective effect of lycopene against MPTP induced experimental Parkinson’s disease in mice. Neurosci Lett 599:12–19. doi: 10.1016/j.neulet.2015.05.024 CrossRefPubMedGoogle Scholar
  10. 10.
    Yi F, He X, Wang D (2013) Lycopene protects against MPP(+)-induced cytotoxicity by maintaining mitochondrial function in SH-SY5Y cells. Neurochem Res 38(8):1747–1757. doi: 10.1007/s11064-013-1079-z CrossRefPubMedGoogle Scholar
  11. 11.
    Fujita K, Yoshimoto N, Kato T, Imada H, Matsumoto G, Inakuma T, Nagata Y, Miyachi E (2013) Lycopene inhibits ischemia/reperfusion-induced neuronal apoptosis in gerbil hippocampal tissue. Neurochem Res 38(3):461–469. doi: 10.1007/s11064-012-0952-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Min JY, Min KB (2014) Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer’s disease mortality in older adults. Dement Geriatr Cognit Disord 37(3–4):246–256. doi: 10.1159/000356486 CrossRefGoogle Scholar
  13. 13.
    Sachdeva AK, Chopra K (2015) Lycopene abrogates Abeta(1–42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. J Nutr Biochem 26(7):736–744. doi: 10.1016/j.jnutbio.2015.01.012 CrossRefPubMedGoogle Scholar
  14. 14.
    Prakash A, Kumar A (2014) Implicating the role of lycopene in restoration of mitochondrial enzymes and BDNF levels in beta-amyloid induced Alzheimers disease. Eur J Pharmacol 741:104–111. doi: 10.1016/j.ejphar.2014.07.036 CrossRefPubMedGoogle Scholar
  15. 15.
    Qu M, Zhou Z, Chen C, Li M, Pei L, Chu F, Yang J, Wang Y, Li L, Liu C, Zhang L, Zhang G, Yu Z, Wang D (2011) Lycopene protects against trimethyltin-induced neurotoxicity in primary cultured rat hippocampal neurons by inhibiting the mitochondrial apoptotic pathway. Neurochem Int 59(8):1095–1103. doi: 10.1016/j.neuint.2011.10.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Qu M, Nan X, Gao Z, Guo B, Liu B, Chen Z (2013) Protective effects of lycopene against methylmercury-induced neurotoxicity in cultured rat cerebellar granule neurons. Brain Res 1540:92–102. doi: 10.1016/j.brainres.2013.10.005 CrossRefPubMedGoogle Scholar
  17. 17.
    Qu M, Li L, Chen C, Li M, Pei L, Chu F, Yang J, Yu Z, Wang D, Zhou Z (2011) Protective effects of lycopene against amyloid beta-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 505(3):286–290. doi: 10.1016/j.neulet.2011.10.048 CrossRefPubMedGoogle Scholar
  18. 18.
    Xu S, Zhong M, Zhang L, Wang Y, Zhou Z, Hao Y, Zhang W, Yang X, Wei A, Pei L, Yu Z (2009) Overexpression of Tfam protects mitochondria against beta-amyloid-induced oxidative damage in SH-SY5Y cells. FEBS J 276(14):3800–3809. doi: 10.1111/j.1742-4658.2009.07094.x CrossRefPubMedGoogle Scholar
  19. 19.
    Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110. doi: 10.1016/j.biopha.2015.07.025 CrossRefPubMedGoogle Scholar
  20. 20.
    Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304(5669):448–452. doi: 10.1126/science.1091230 CrossRefPubMedGoogle Scholar
  21. 21.
    Hureau C, Faller P (2009) Abeta-mediated ROS production by Cu ions: structural insights, mechanisms and relevance to Alzheimer’s disease. Biochimie 91(10):1212–1217. doi: 10.1016/j.biochi.2009.03.013 CrossRefPubMedGoogle Scholar
  22. 22.
    Parks JK, Smith TS, Trimmer PA, Bennett JP, Parker WD (2001) Neurotoxic Aβ peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76(4):1050–1056. doi: 10.1046/j.1471-4159.2001.00112.x CrossRefPubMedGoogle Scholar
  23. 23.
    Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 80(1):91–100CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang Q, Yu J-T, Wang P, Chen W, Wu Z-C, Jiang H, Tan L (2011) Mitochondrial transcription factor A (TFAM) polymorphisms and risk of late-onset Alzheimer’s disease in Han Chinese. Brain Res 1368:355–360. doi: 10.1016/j.brainres.2010.10.074 CrossRefPubMedGoogle Scholar
  25. 25.
    Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 7(12):548–554CrossRefPubMedGoogle Scholar
  26. 26.
    Rizwan M, Rodriguez-Blanco I, Harbottle A, Birch-Machin MA, Watson RE, Rhodes LE (2011) Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: a randomized controlled trial. Br J Dermatol 164(1):154–162. doi: 10.1111/j.1365-2133.2010.10057.x CrossRefPubMedGoogle Scholar
  27. 27.
    Hong WK, Han EH, Kim DG, Ahn JY, Park JS, Han BG (2007) Amyloid-beta-peptide reduces the expression level of mitochondrial cytochrome oxidase subunits. Neurochem Res 32(9):1483–1488. doi: 10.1007/s11064-007-9336-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Yue R, Xia X, Jiang J, Yang D, Han Y, Chen X, Cai Y, Li L, Wang WE, Zeng C (2015) Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene. J Cell Physiol 230(9):2128–2141. doi: 10.1002/jcp.24941 CrossRefPubMedGoogle Scholar
  29. 29.
    Choi H, Lee DG (2015) Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction. Biochimie 115:108–115. doi: 10.1016/j.biochi.2015.05.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mingyue Qu
    • 1
  • Zheng Jiang
    • 2
  • Yuanxiang Liao
    • 1
  • Zhenyao Song
    • 3
  • Xinzhong Nan
    • 1
  1. 1.Center for Diseases Prevention and Control of the Rocket Force of PLABeijingPeople’s Republic of China
  2. 2.Affiliated Hospital of Academy of Military Medical SciencesBeijingPeople’s Republic of China
  3. 3.Center for Diseases Prevention and Control of the Air Force of PLABeijingPeople’s Republic of China

Personalised recommendations