Neurochemical Research

, Volume 41, Issue 1–2, pp 353–363 | Cite as

Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging

  • Silvia Lores-Arnaiz
  • Paulina Lombardi
  • Analía G. Karadayian
  • Federico Orgambide
  • Daniela Cicerchia
  • Juanita Bustamante
Original Paper


Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton leak were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.


Synaptosomes Non-synaptic mitochondria Aging Cerebral cortex Respiration Depolarization 



Central nervous system


Cytochrome c oxidase


Ethylenediaminetetraacetic acid


Carbonyl cyanide p-trifluoromethoxyphenylhydrazone


Forward side scatter


Mitochondrial permeability transition




Respiratory control rate


Reactive oxygen species


Side scatter


Tetramethylrhodamineethyl ester


Uncoupling protein


Voltage-dependent anion channel



This research was supported by Grants from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 112-20110100271), and Universidad de Buenos Aires (UBA, 0020130100255BA), Argentina.


  1. 1.
    Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145CrossRefPubMedGoogle Scholar
  3. 3.
    Ly CV, Verstreken P (2006) Mitochondria at the Synapse. Neuroscientist 12:291–299CrossRefPubMedGoogle Scholar
  4. 4.
    Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mac Askill AF, Kittler JT (2010) Control of mitochondrial transport and localization in neurons. Trends Cell Biol 20:102–112CrossRefGoogle Scholar
  6. 6.
    Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887CrossRefPubMedGoogle Scholar
  7. 7.
    Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Piccioni F, Pinton P, Simeoni S, Pozzi P, Fascio U, Vismara G, Martini L, Rizzuto R, Poletti A (2002) Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J 16:1418–1420PubMedGoogle Scholar
  9. 9.
    Rintoul GL, Reynolds IJ (2009) Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta 1802:143–150CrossRefPubMedGoogle Scholar
  10. 10.
    Nicholls DG (2010) Stochastic aspects of transmitter release and bioenergetic dysfunction in isolated nerve terminals. Biochem Soc Trans 38:457–459CrossRefPubMedGoogle Scholar
  11. 11.
    Nicholls DG (2003) Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem Res 28:1433–1441CrossRefPubMedGoogle Scholar
  12. 12.
    Brown MR, Sullivan PG, Geddes JW (2006) Synaptic mitochondria are more susceptible to Ca2+ overload than non synaptic mitochondria. J Biol Chem 281:11658–11668CrossRefPubMedGoogle Scholar
  13. 13.
    Sastre J, Pallardó FV, García de la Asunción J, Viña J (2000) Mitochondria, oxidative stress and aging. Free Radic Res 32:189–198CrossRefPubMedGoogle Scholar
  14. 14.
    Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer´s disease. Trends Mol Med 14:45–53CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lores-Arnaiz S, Bustamante J (2011) Age-related alterations in mitochondrial physiological parameters and nitric oxide production in synaptic and non-synaptic brain cortex mitochondria. Neuroscience 188:117–124CrossRefPubMedGoogle Scholar
  16. 16.
    Clark JB, Nicklas WJ (1970) The metabolism of rat brain mitochondria Preparation and characterization. J Biol Chem 245:4724–4731PubMedGoogle Scholar
  17. 17.
    de Lores Rodríguez, Arnaiz G, Girardi E (1977) The increase in respiratory capacity of brain subcellular fractions after the administration of the convulsant 3-mercaptopropionic acid. Life Sci 21:637–646CrossRefGoogle Scholar
  18. 18.
    Lores-Arnaiz S, D’Amico G, Czerniczyniec A, Bustamante J, Boveris A (2004) Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine. Arch Biochem Biophys 430:170–177CrossRefPubMedGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  20. 20.
    Choi SW, Gerencser AA, Lee DW, Rajagopalan S, Nicholls DG, Andersen JK, Brand MD (2011) Intrinsic bioenergetic properties and stress sensitivity of dopaminergic synaptosomes. J Neurosci 31:4524–4534CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Estabrook R (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol 10:41–47CrossRefGoogle Scholar
  22. 22.
    Petit JM, Huet O, Gallet PF, Maftah A, Ratinaud MH, Julien R (1994) Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes. Eur J Biochem 220:871–879CrossRefPubMedGoogle Scholar
  23. 23.
    Lores-Arnaiz S, Lores Arnaiz MR, Czerniczyniec A, Bustamante J (2010) Mitochondrial function and nitric oxide production in hippocampus and cerebral cortex of rats exposed to enriched environment. Brain Res 1319:44–53CrossRefPubMedGoogle Scholar
  24. 24.
    Yonetani T (1967) Cytochrome oxidase: beef heart. Methods Enzymol 10:332–335CrossRefGoogle Scholar
  25. 25.
    Klingenberg M (1999) Uncoupling protein–a useful energy dissipater. J Bioenerg Biomembr 31:419–430CrossRefPubMedGoogle Scholar
  26. 26.
    Gylys KH, Fein JA, Cole GM (2000) Quantitative characterization of crude synaptosomal fraction (P-2) components by flow cytometry. J Neurosci Res 61:186–192CrossRefPubMedGoogle Scholar
  27. 27.
    Hamberger A, Blomstrand C, Lehninger AL (1970) Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain. J Cell Biol 45:221–234CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Barazzoni R, Nair KS (2001) Changes in uncoupling protein-2 and -3 expression in aging rat skeletal muscle, liver, and heart. Am J Physiol Endocrinol Metab 280:E413–E419PubMedGoogle Scholar
  29. 29.
    Stauch KL, Purnell PR, Fox HS (2014) Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function. Aging (Albany NY) 6:320–334Google Scholar
  30. 30.
    Navarro A, Gomez C, Lopez-Cepero JM, Boveris A (2004) Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 286:505–511CrossRefGoogle Scholar
  31. 31.
    Petrosillo G, De Benedictis V, Ruggiero FM, Paradies G (2013) Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging Role of peroxidized cardiolipin and beneficial effectof melatonin. J Bioenerg Biomembr 45:431–440CrossRefPubMedGoogle Scholar
  32. 32.
    Nicoletti VG, Tendi EA, Lalicata C, Reale S, Costa A, Villa RF, Ragusa N, Giuffrida Stella AM (1995) Changes of mitochondrial cytochrome c oxidase and FoF1 ATP synthase subunits in rat cerebral cortex during aging. Neurochem Res 20:1465–1470CrossRefPubMedGoogle Scholar
  33. 33.
    Manczak M, Jung Y, Park BS, Partovi D, Reddy PH (2005) Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. J Neurochem 92:494–504CrossRefPubMedGoogle Scholar
  34. 34.
    Cuadrado-Tejedor M, Cabodevilla JF, Zamarbide M, Gómez-Isla T, Franco R, Perez-Mediavilla A (2013) Age-related mitochondrial alterations without neuronal loss in the hippocampus of a transgenic model of Alzheimer’s disease. Curr Alzheimer Res 10:390–405CrossRefPubMedGoogle Scholar
  35. 35.
    Villa RF, Gorini A, Hoyer S (2006) Differentiated effect of aging of Krebs’ cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex. J Neural Transm 113:1659–1670CrossRefPubMedGoogle Scholar
  36. 36.
    Villa RF, Ferrari F, Gorini A (2012) Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing. Neuroscience 227:55–66CrossRefPubMedGoogle Scholar
  37. 37.
    Villa RF, Gorini A, Hoyer S (2009) Effect of ageing and ischemia on enzymatic activities linked to Krebs’ cycle, electron transfer chain, glutamate and amino acids metabolism of “free” and intra synaptic mitochondria of cerebral cortex. Neurochem Res 34:2102–2116CrossRefPubMedGoogle Scholar
  38. 38.
    Naga KK, Sullivan PG, Geddes JW (2007) High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition. J Neurosci 27:7469–7475CrossRefPubMedGoogle Scholar
  39. 39.
    Yarana C, Sanit J, Chattipakorn N, Chattipakorn S (2012) Synaptic and non synaptic mitochondria demonstrate a different degree of calcium-induced mitochondrial dysfunction. Life Sci 90:808–814CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Silvia Lores-Arnaiz
    • 1
  • Paulina Lombardi
    • 1
  • Analía G. Karadayian
    • 1
  • Federico Orgambide
    • 1
  • Daniela Cicerchia
    • 1
  • Juanita Bustamante
    • 2
  1. 1.Instituto de Bioquímica y Medicina Molecular, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Centro de Altos Estudios en Ciencias de la SaludUniversidad Abierta InteramericanaBuenos AiresArgentina

Personalised recommendations