Neurochemical Research

, Volume 41, Issue 6, pp 1238–1249 | Cite as

Heat shock protein 60 affects behavioral improvement in a rat model of Parkinson’s disease grafted with human umbilical cord mesenchymal stem cell-derived dopaminergic-like neurons

  • Can Zhao
  • Hui Li
  • Xian-Jing Zhao
  • Zheng-Xia Liu
  • Ping Zhou
  • Ying Liu
  • Mei-Jiang Feng
Original Paper


Parkinson’s disease (PD) is a neurodegenerative disorder that is caused by a loss of dopaminergic (DAergic) neurons in mesencephalic substantia nigra (SN). Human umbilical cord mesenchymal stem cells (hUC-MSCs) are capable of self-renewal and differentiation into multiple cell lineages, including DAergic neurons. Thus, hUC-MSCs could be a promising alternative to compensate for the loss of DAergic neurons in PD. In the current study, hUC-MSCs and hUC-MSCs-derived DAergic-like neurons were transplanted into the striatum and SN of a rat model of PD that is induced by 6-hydroxydopamine (6-OHDA). We evaluated their therapeutic effects on improving rotation behavior in the rat and on modulating the level of heat shock protein 60 (Hsp60) expression in the brain. After transplantation, an amelioration of rotation behavior was observed in rats that underwent cell grafting, and hUC-MSCs-derived DAergic-like neurons were superior to hUC-MSCs at inducing behavioral improvement. Western blot and immunohistochemistry analysis indicated significantly elevated levels of Hsp60 in cell-grafted rats compared to 6-OHDA-lesioned (PD) rats. These results demonstrate that hUC-MSCs-based cell transplantation is potential therapeutic treatment for PD, and hUC-MSCs-derived DAergic-like neurons appear to be favorable candidates for cell replacement therapy in PD. Finally, Hsp60 could be involved in a mechanism of behavioral recovery.


Heat shock protein 60 Human umbilical cord mesenchymal stem cell Dopaminergic-like neuron Parkinson’s disease Cell replacement therapy 



Basic fibroblast growth factor


Caudate putamen unit


Central nervous system

β-Tubulin III

Class III β-tubulin


Deep brain stimulation




Dulbecco’s modified Eagle’s medium


Fluorescent-activated cell sorting


Fetal bovine serum


Fibroblast growth factor


Glial cell-derived neurotrophic factor


Hepatocyte growth factor


Heat shock protein 60


Human umbilical cord mesenchymal stem cells


Mesenchymal stem cells


Neuronal nuclei antigen


Nerve growth factor




Parkinson’s disease


Phosphate buffered saline


Polyvinylidene fluoride




Substantia nigra


Tyrosine hydroxylase


Vascular endothelial growth factor



This work was supported by grants from the Natural Science Foundation of China (No. 81270428), the Social Development Project of Jiangsu Province (BE 2015721) and “Six Talent Peak” Foundation of Jiangsu Province (2010-WS-030).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest regarding this article.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standrads of the institution at which this study was conducted.

Supplementary material


Successful PD models. Each rat was assessed rotation behavior after apomorphine injection. Full 360° turns in the direction ipsilateral to the lesion were counted and only those rats showing at least 6 full-body contralateral rotations per minute were considered to be successful PD models and selected for further study (MP4 44519 kb)


  1. 1.
    Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. doi: 10.1136/jnnp.2007.131045 CrossRefPubMedGoogle Scholar
  2. 2.
    Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311(16):1670–1683. doi: 10.1001/jama.2014.3654 CrossRefPubMedGoogle Scholar
  3. 3.
    LeWitt PA (2015) Levodopa therapy for Parkinson’s disease: pharmacokinetics and pharmacodynamics. Mov Disord 30(1):64–72. doi: 10.1002/mds.26082 CrossRefPubMedGoogle Scholar
  4. 4.
    Lindvall O (2001) Parkinson disease. stem cell transplantation. Lancet 358(Suppl):S48. doi: 10.1016/S0140-6736(01)07060-X PubMedGoogle Scholar
  5. 5.
    Lindvall O, Barker RA, Brustle O, Isacson O, Svendsen CN (2012) Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell 10(2):151–155. doi: 10.1016/j.stem.2012.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Can A, Karahuseyinoglu S (2007) Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25(11):2886–2895. doi: 10.1634/stemcells.2007-0417 CrossRefPubMedGoogle Scholar
  7. 7.
    Tanna T, Sachan V (2014) Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther 9(6):513–521CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflamm 10(1):106. doi: 10.1186/1742-2094-10-106 CrossRefGoogle Scholar
  9. 9.
    Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33(3):136–143. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang Z, Alexanian AR (2012) Dopaminergic-like cells from epigenetically reprogrammed mesenchymal stem cells. J Cell Mol Med 16(11):2708–2714. doi: 10.1111/j.1582-4934.2012.01591.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hayashi T, Wakao S, Kitada M, Ose T, Watabe H, Kuroda Y, Mitsunaga K, Matsuse D, Shigemoto T, Ito A, Ikeda H, Fukuyama H, Onoe H, Tabata Y, Dezawa M (2013) Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J Clin Investig 123(1):272–284. doi: 10.1172/JCI62516 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li M, Zhang SZ, Guo YW, Cai YQ, Yan ZJ, Zou Z, Jiang XD, Ke YQ, He XY, Jin ZL, Lu GH, Su DQ (2010) Human umbilical vein-derived dopaminergic-like cell transplantation with nerve growth factor ameliorates motor dysfunction in a rat model of Parkinson’s disease. Neurochem Res 35(10):1522–1529. doi: 10.1007/s11064-010-0211-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Gaillard A, Jaber M (2011) Rewiring the brain with cell transplantation in Parkinson’s disease. Trends Neurosci 34(3):124–133CrossRefPubMedGoogle Scholar
  14. 14.
    Politis M, Lindvall O (2012) Clinical application of stem cell therapy in Parkinson’s disease. BMC Med 10:1. doi: 10.1186/1741-7015-10-1 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lindvall O (2013) Developing dopaminergic cell therapy for Parkinson’s disease—give up or move forward? Mov Disord 28(3):268–273. doi: 10.1002/mds.25378 CrossRefPubMedGoogle Scholar
  16. 16.
    Lin L, Kim SC, Wang Y, Gupta S, Davis B, Simon SI, Torre-Amione G, Knowlton AA (2007) HSP60 in heart failure: abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293(4):H2238–H2247. doi: 10.1152/ajpheart.00740.2007 CrossRefPubMedGoogle Scholar
  17. 17.
    Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366CrossRefPubMedGoogle Scholar
  18. 18.
    Feng M, Zhang L, Liu Z, Zhou P, Lu X (2013) The expression and release of Hsp60 in 6-OHDA induced in vivo and in vitro models of Parkinson’s disease. Neurochem Res 38(10):2180–2189. doi: 10.1007/s11064-013-1127-8 CrossRefPubMedGoogle Scholar
  19. 19.
    Intawicha P, Wang SH, Hsieh YC, Lo NW, Lee KH, Huang SY, Ju JC (2013) Proteomic profiling of rabbit embryonic stem cells derived from parthenotes and fertilized embryos. PLoS ONE 8(7):e67772. doi: 10.1371/journal.pone.0067772 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jang JH, Jung JS, Choi JI, Kang SK (2012) Nuclear Ago2/HSP60 contributes to broad spectrum of hATSCs function via Oct4 regulation. Antioxid Redox Signal 16(5):383–399. doi: 10.1089/ars.2011.4134 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Habich C, Burkart V (2007) Heat shock protein 60: regulatory role on innate immune cells. Cell Mol Life Sci 64(6):742–751. doi: 10.1007/s00018-007-6413-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Yan M, Sun M, Zhou Y, Wang W, He Z, Tang D, Lu S, Wang X, Li S, Wang W, Li H (2013) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson’s disease in a rhesus monkey model. PLoS ONE 8(5):e64000. doi: 10.1371/journal.pone.0064000 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells 24(3):781–792. doi: 10.1634/stemcells.2005-0330 CrossRefPubMedGoogle Scholar
  24. 24.
    Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110. doi: 10.1634/stemcells.21-1-105 CrossRefPubMedGoogle Scholar
  25. 25.
    Ding DC, Chang YH, Shyu WC, Lin SZ (2015) Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. doi: 10.3727/096368915X686841 Google Scholar
  26. 26.
    Jung Y, Bauer G, Nolta JA (2012) Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 30(1):42–47. doi: 10.1002/stem.727 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124. doi: 10.1634/stemcells.2005-0053 CrossRefPubMedGoogle Scholar
  28. 28.
    Chen G, Yue A, Ruan Z, Yin Y, Wang R, Ren Y, Zhu L (2014) Human umbilical cord-derived mesenchymal stem cells do not undergo malignant transformation during long-term culturing in serum-free medium. PLoS ONE 9(6):e98565. doi: 10.1371/journal.pone.0098565 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA 102(50):18171–18176. doi: 10.1073/pnas.0508945102 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY, Cheng SM (2013) Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS ONE 8(8):e72604. doi: 10.1371/journal.pone.0072604 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cheng Q, Zhang Z, Zhang S, Yang H, Zhang X, Pan J, Weng L, Sha D, Zhu M, Hu X, Xu Y (2015) Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation. Brain Res 1594:293–304. doi: 10.1016/j.brainres.2014.10.065 CrossRefPubMedGoogle Scholar
  32. 32.
    Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, Borlongan CV (2015) Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 17(1):18–24. doi: 10.1016/j.jcyt.2014.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hallett PJ, Cooper O, Sadi D, Robertson H, Mendez I, Isacson O (2014) Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep 7(6):1755–1761. doi: 10.1016/j.celrep.2014.05.027 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nesti C, Pardini C, Barachini S, D’Alessandro D, Siciliano G, Murri L, Petrini M, Vaglini F (2011) Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone. Brain Res 1367:94–102. doi: 10.1016/j.brainres.2010.09.042 CrossRefPubMedGoogle Scholar
  35. 35.
    Kim YJ, Park HJ, Lee G, Bang OY, Ahn YH, Joe E, Kim HO, Lee PH (2009) Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia 57(1):13–23. doi: 10.1002/glia.20731 CrossRefPubMedGoogle Scholar
  36. 36.
    Cova L, Bossolasco P, Armentero MT, Diana V, Zennaro E, Mellone M, Calzarossa C, Cerri S, Deliliers GL, Polli E, Blandini F, Silani V (2012) Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson’s disease. Apoptosis 17(3):289–304. doi: 10.1007/s10495-011-0679-9 CrossRefPubMedGoogle Scholar
  37. 37.
    Helfand SL (2002) Neurobiology. Chaperones take flight. Science 295(5556):809–810. doi: 10.1126/science.1069544 CrossRefPubMedGoogle Scholar
  38. 38.
    Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR (2008) A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 28(10):2320–2331. doi: 10.1523/JNEUROSCI.4760-07.2008 CrossRefPubMedGoogle Scholar
  39. 39.
    Kang L, Zhang G, Yan Y, Ke K, Wu X, Gao Y, Li J, Zhu L, Wu Q, Zhou Z (2013) The role of HSPA12B in regulating neuronal apoptosis. Neurochem Res 38(2):311–320. doi: 10.1007/s11064-012-0922-y CrossRefPubMedGoogle Scholar
  40. 40.
    Thakur P, Nehru B (2014) Modulatory effects of sodium salicylate on the factors affecting protein aggregation during rotenone induced Parkinson’s disease pathology. Neurochem Int 75:1–10. doi: 10.1016/j.neuint.2014.05.002 CrossRefPubMedGoogle Scholar
  41. 41.
    Ahn TB, Jeon BS (2006) Protective role of heat shock and heat shock protein 70 in lactacystin-induced cell death both in the rat substantia nigra and PC12 cells. Brain Res 1087(1):159–167. doi: 10.1016/j.brainres.2006.02.097 CrossRefPubMedGoogle Scholar
  42. 42.
    Prinsloo E, Setati MM, Longshaw VM, Blatch GL (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? BioEssays 31(4):370–377. doi: 10.1002/bies.200800158 CrossRefPubMedGoogle Scholar
  43. 43.
    Fan GC (2012) Role of heat shock proteins in stem cell behavior. Prog Mol Biol Transl Sci 111:305–322. doi: 10.1016/B978-0-12-398459-3.00014-9 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, Kim HW, Pasha Z, Wen Z, Rao F, Modi RM, Yu X, Ashraf M (2014) Heat shock improves Sca-1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells 32(2):462–472. doi: 10.1002/stem.1571 CrossRefPubMedGoogle Scholar
  45. 45.
    McGinley LM, McMahon J, Stocca A, Duffy A, Flynn A, O’Toole D, O’Brien T (2013) Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther 24(10):840–851. doi: 10.1089/hum.2011.009 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cizkova D, Rosocha J, Vanicky I, Radonak J, Galik J, Cizek M (2006) Induction of mesenchymal stem cells leads to HSP72 synthesis and higher resistance to oxidative stress. Neurochem Res 31(8):1011–1020. doi: 10.1007/s11064-006-9107-x CrossRefPubMedGoogle Scholar
  47. 47.
    Makino S, Whitehead GG, Lien CL, Kim S, Jhawar P, Kono A, Kawata Y, Keating MT (2005) Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. Proc Natl Acad Sci USA 102(41):14599–14604. doi: 10.1073/pnas.0507408102 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L, Dunbar GL (2013) Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 4(5):130. doi: 10.1186/scrt341 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Coyne TM, Marcus AJ, Woodbury D, Black IB (2006) Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 24(11):2483–2492. doi: 10.1634/stemcells.2006-0174 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Can Zhao
    • 1
  • Hui Li
    • 1
  • Xian-Jing Zhao
    • 1
  • Zheng-Xia Liu
    • 1
  • Ping Zhou
    • 1
  • Ying Liu
    • 1
  • Mei-Jiang Feng
    • 1
  1. 1.Department of Geriatrics, the Second Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations