Neurochemical Research

, Volume 41, Issue 3, pp 620–630 | Cite as

New Insights into Epigenetic and Pharmacological Regulation of Amyloid-Degrading Enzymes

  • Natalia N. Nalivaeva
  • Nikolai D. Belyaev
  • Anthony J. Turner
Original Paper


Currently, deficit of amyloid β-peptide (Aβ) clearance from the brain is considered as one of the possible causes of amyloid accumulation and neuronal death in the sporadic form of Alzheimer’s disease (AD). Aβ clearance can involve either specific proteases present in the brain or Aβ-binding/transport proteins. Among amyloid-degrading enzymes the most intensively studied are neprilysin (NEP) and insulin-degrading enzyme (IDE). Since ageing and development of brain pathologies is often accompanied by a deficit in the levels of expression and activity of these enzymes in the brain, there is an urgent need to understand the mechanisms involved in their regulation. We have recently reported that NEP and also an Aβ-transport protein, transthyretin are epigenetically co-regulated by the APP intracellular domain (AICD) and this regulation depends on the cell type and APP695 isoform expression in a process that can be regulated by the tyrosine kinase inhibitor, Gleevec. We have now extended our work and shown that, unlike NEP, another amyloid-degrading enzyme, IDE, is not related to over-expression of APP695 in neuroblastoma SH-SY5Y cells but is up-regulated by APP751 and APP770 isoforms independently of AICD but correlating with reduced HDAC1 binding to its promoter. Studying the effect of the nuclear retinoid X receptor agonist, bexarotene, on NEP and IDE expression, we have found that both enzymes can be up-regulated by this compound but this mechanism is not APP-isoform specific and does not involve AICD but, on the contrary, affects HDAC1 occupancy on the NEP gene promoter. These new insights into the mechanisms of NEP and IDE regulation suggest possible pharmacological targets in developing AD therapies.


Amyloid peptide APP AICD Bexarotene Histone deacetylases Insulin-degrading enzyme Neprilysin 


Amyloid β-peptide


Alzheimer’s disease


APP intracellular domain


Amyloid precursor protein




Endothelin-converting enzyme


Insulin-degrading enzyme


Histone deacetylase




Protein kinase C





Supported by U.K. Medical Research Council, Alzheimer’s Research UK (CK), FP7-PEOPLE-2010-IEF (EB), RFBR 13-04-00388, Programme of Russian Academy of Science “Fundamental Sciences to Medicine”.

Compliance with Ethical Standards

Conflict of interest

Authors declare no conflicts of interest.


  1. 1.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185CrossRefPubMedGoogle Scholar
  2. 2.
    Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4):1129–1134CrossRefPubMedGoogle Scholar
  3. 3.
    Goate A, Hardy J (2012) Twenty years of Alzheimer’s disease-causing mutations. J Neurochem 120(Suppl 1):3–8CrossRefPubMedGoogle Scholar
  4. 4.
    Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jönsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488:96–99CrossRefPubMedGoogle Scholar
  5. 5.
    van Helmond Z, Miners JS, Kehoe PG, Love S (2010) Oligomeric Aβ in Alzheimer’s disease: relationship to plaque and tangle pathology, APOE genotype and cerebral amyloid angiopathy. Brain Pathol 20(2):468–480CrossRefPubMedGoogle Scholar
  6. 6.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539CrossRefPubMedGoogle Scholar
  7. 7.
    Chasseigneaux S, Allinquant B (2012) Functions of Aβ, sAPPα and sAPPβ : similarities and differences. J Neurochem 120(Suppl 1):99–108CrossRefPubMedGoogle Scholar
  8. 8.
    Octave JN, Pierrot N, Ferao Santos S, Nalivaeva NN, Turner AJ (2013) From synaptic spines to nuclear signaling: nuclear and synaptic actions of the amyloid precursor protein. J Neurochem 126(2):183–190CrossRefPubMedGoogle Scholar
  9. 9.
    Nalivaeva NN, Turner AJ (2013) The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Lett 587(13):2046–2054CrossRefPubMedGoogle Scholar
  10. 10.
    Dawkins E, Small DH (2014) Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer’s disease. J Neurochem 129(5):756–769CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Koudinov AR, Berezov TT (2004) Alzheimer’s amyloid-β (Aβ) is an essential synaptic protein, not neurotoxic junk. Acta Neurobiol Exp (Wars) 64(1):71–79Google Scholar
  12. 12.
    Pearson HA, Peers C (2006) Physiological roles for amyloid β peptides. J Physiol 575(1):5–10CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ (2012) Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer’s disease? J Neurochem 120(Suppl 1):167–185CrossRefPubMedGoogle Scholar
  14. 14.
    Maltsev AV, Santockyte R, Bystryak S, Galzitskaya OV (2014) Activation of neuronal defense mechanisms in response to pathogenic factors triggering induction of amyloidosis in Alzheimer’s disease. J Alzheimers Dis 40(1):19–32PubMedGoogle Scholar
  15. 15.
    Gan KJ, Morihara T, Silverman MA (2015) Atlas stumbled: kinesin light chain-1 variant E triggers a vicious cycle of axonal transport disruption and amyloid-β generation in Alzheimer’s disease. BioEssays 37(2):131–141CrossRefPubMedGoogle Scholar
  16. 16.
    McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126(4):479–497CrossRefPubMedGoogle Scholar
  17. 17.
    Kan MJ, Lee JE, Wilson JG, Everhart AL, Brown CM, Hoofnagle AN, Jansen M, Vitek MP, Gunn MD, Colton CA (2015) Arginine deprivation and immune suppression in a mouse model of Alzheimer’s disease. J Neurosci 35(15):5969–5982CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Miners JS, Palmer JC, Tayler H, Palmer LE, Ashby E, Kehoe PG, Love S (2014) Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes. Front Aging Neurosci 6:238CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM (2005) Age- and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders. Neurobiol Aging 26(5):645–654CrossRefPubMedGoogle Scholar
  20. 20.
    Nalivaeva NN, Belyaev ND, Lewis DI, Pickles AR, Makova NZ, Bagrova DI, Dubrovskaya NM, Plesneva SA, Zhuravin IA, Turner AJ (2012) Effect of sodium valproate administration on brain neprilysin expression and memory in rats. J Mol Neurosci 46(3):569–577CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson VE, Stewart W, Graham DI, Stewart JE, Praestgaard AH, Smith DH (2009) A neprilysin polymorphism and amyloid-β plaques after traumatic brain injury. J Neurotrauma 26(8):1197–1202CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kochkina EG, Plesneva SA, Vasilev DS, Zhuravin IA, Turner AJ, Nalivaeva NN (2015) Effects of ageing and experimental diabetes on insulin-degrading enzyme expression in male rat tissues. Biogerontology (Epub ahead of print)Google Scholar
  23. 23.
    Pardossi-Piquard R, Petit A, Kawarai T, Sunyach C, Alves da Costa C, Vincent B, Sévalle J, Pimplikar S, St George-Hyslop P, Checler F (2005) Presenilin-dependent transcriptional control of the Aβ-degrading enzyme neprilysin by intracellular domains of βAPP and APLP. Neuron 46:541–554CrossRefPubMedGoogle Scholar
  24. 24.
    Belyaev ND, Nalivaeva NN, Makova NZ, Turner AJ (2009) Neprilysin gene expression requires binding of the amyloid precursor protein intracellular domain to its promoter: implications for Alzheimer disease. EMBO Rep 10:94–100CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Beckett C, Nalivaeva NN, Belyaev ND, Turner AJ (2012) Nuclear signalling by membrane protein intracellular domains: the AICD enigma. Cell Signal 24(2):402–409CrossRefPubMedGoogle Scholar
  26. 26.
    Grimm MO, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T (2013) Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s disease. Front Aging Neurosci 5:98CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 6:235CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Belyaev ND, Kellett KA, Beckett C, Makova NZ, Revett TJ, Nalivaeva NN, Hooper NM, Turner AJ (2010) The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a β-secretase-dependent pathway. J Biol Chem 285(53):41443–41454CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kerridge C, Belyaev ND, Nalivaeva NN, Turner AJ (2014) The Aβ-clearance protein transthyretin, like neprilysin, is epigenetically regulated by the amyloid precursor protein intracellular domain. J Neurochem 130(3):419–431CrossRefPubMedGoogle Scholar
  30. 30.
    Eisele YS, Baumann M, Klebl B, Nordhammer C, Jucker M, Kilger E (2007) Gleevec increases levels of the amyloid precursor protein intracellular domain and of the amyloid-β degrading enzyme neprilysin. Mol Biol Cell 18(9):3591–3600CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Marr RA, Spencer BJ (2010) NEP-like endopeptidases and Alzheimer’s disease. Curr Alzheimer Res 7:223–229CrossRefPubMedGoogle Scholar
  32. 32.
    Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40:1087–1093CrossRefPubMedGoogle Scholar
  33. 33.
    Hafez D, Huang JY, Huynh AM, Valtierra S, Rockenstein E, Bruno AM, Lu B, DesGroseillers L, Masliah E, Marr RA (2011) Neprilysin-2 is an important β-amyloid degrading enzyme. Am J Pathol 178(1):306–312CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335(6075):1503–1506CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dai W, Yang J, Chen T, Yang Z (2014) Protective effects of bexarotene against amyloid-β25-35-induced dysfunction in hippocampal neurons through the insulin signaling pathway. Neurodegener Dis 14(2):77–84CrossRefPubMedGoogle Scholar
  36. 36.
    Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Abeta by neprilysin. Science 292(5521):1550–1552CrossRefPubMedGoogle Scholar
  37. 37.
    Shirotani K, Tsubuki S, Iwata N, Takaki Y, Harigaya W, Maruyama K, Kiryu-Seo S, Kiyama H, Iwata H, Tomita T, Iwatsubo T, Saido TC (2001) Neprilysin degrades both amyloid β peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 276:21895–21901CrossRefPubMedGoogle Scholar
  38. 38.
    Turner AJ (2003) Exploring the structure and function of zinc metallopeptidases: old enzymes and new discoveries. Biochem Soc Trans 31(3):723–727CrossRefPubMedGoogle Scholar
  39. 39.
    Howell S, Nalbantoglu J, Crine P (1995) Neutral endopeptidase can hydrolyze β-amyloid(1–40) but shows no effect on β-amyloid precursor protein metabolism. Peptides 16(4):647–652CrossRefPubMedGoogle Scholar
  40. 40.
    Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E (2003) Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 23(6):1992–1996PubMedGoogle Scholar
  41. 41.
    Spencer B, Verma I, Desplats P, Morvinski D, Rockenstein E, Adame A, Masliah E (2014) A neuroprotective brain-penetrating endopeptidase fusion protein Ameliorates Alzheimer disease pathology and restores neurogenesis. J Biol Chem 289(25):17917–17931CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wang S, Wang R, Chen L, Bennett DA, Dickson DW, Wang DS (2010) Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer’s brain. J Neurochem 115(1):47–57CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kurochkin IV, Goto S (1994) Alzheimer’s beta-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345(1):33–37CrossRefPubMedGoogle Scholar
  44. 44.
    Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100(7):4162–4167CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fernández-Gamba A, Leal MC, Morelli L, Castaño EM (2009) Insulin-degrading enzyme: structure-function relationship and its possible roles in health and disease. Curr Pharm Des 15(31):3644–3655CrossRefPubMedGoogle Scholar
  46. 46.
    Morelli L, Llovera RE, Alonso LG, Frangione B, de Prat-Gay G, Ghiso J, Castaño EM (2005) Insulin-degrading enzyme degrades amyloid peptides associated with British and Danish familial dementia. Biochem Biophys Res Commun 332(3):808–816CrossRefPubMedGoogle Scholar
  47. 47.
    Edbauer D, Willem M, Lammich S, Steiner H, Haass C (2002) Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD). J Biol Chem 277(16):13389–13393CrossRefPubMedGoogle Scholar
  48. 48.
    Ciaccio C, Tundo GR, Grasso G, Spoto G, Marasco D, Ruvo M, Gioia M, Rizzarelli E, Coletta M (2009) Somatostatin: a novel substrate and a modulator of insulin-degrading enzyme activity. J Mol Biol 385(5):1556–1567CrossRefPubMedGoogle Scholar
  49. 49.
    Barnes K, Doherty S, Turner AJ (1995) Endopeptidase-24.11 is the integral membrane peptidase initiating degradation of somatostatin in the hippocampus. J Neurochem 64:1826–1832CrossRefPubMedGoogle Scholar
  50. 50.
    Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M, Saido TC (2005) Somatostatin regulates brain amyloid β peptide Aβ42 through modulation of proteolytic degradation. Nat Med 11:434–439CrossRefPubMedGoogle Scholar
  51. 51.
    Leissring MA, Farris W, Wu X, Christodoulou DC, Haigis MC, Guarente L, Selkoe DJ (2004) Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochem J 383(3):439–446CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhao J, Li L, Leissring MA (2009) Insulin-degrading enzyme is exported via an unconventional protein secretion pathway. Mol Neurodegener 4:4CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bulloj A, Leal MC, Xu H, Castaño EM, Morelli L (2010) Insulin-degrading enzyme sorting in exosomes: a secretory pathway for a key brain amyloid-beta degrading protease. J Alzheimers Dis 19(1):79–95PubMedPubMedCentralGoogle Scholar
  54. 54.
    Hama E, Shirotani K, Masumoto H, Sekine-Aizawa Y, Aizawa H, Saido TC (2001) Clearance of extracellular and cell-associated amyloid β peptide through viral expression of neprilysin in primary neurons. J Biochem 130(6):721–726CrossRefPubMedGoogle Scholar
  55. 55.
    Iwata N, Sekiguchi M, Hattori Y, Takahashi A, Asai M, Ji B, Higuchi M, Staufenbiel M, Muramatsu S, Saido TC (2013) Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep 3:1472PubMedPubMedCentralGoogle Scholar
  56. 56.
    Carty N, Nash KR, Brownlow M, Cruite D, Wilcock D, Selenica ML, Lee DC, Gordon MN, Morgan D (2013) Intracranial injection of AAV expressing NEP but not IDE reduces amyloid pathology in APP + PS1 transgenic mice. PLoS ONE 8(3):e59626CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Higgins GC, Beart PM, Shin YS, Chen MJ, Cheung NS, Nagley P (2010) Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimers Dis 20(Suppl 2):453–473Google Scholar
  58. 58.
    Melzig MF, Janka M (2003) Enhancement of neutral endopeptidase activity in SK-N-SH cells by green tea extract. Phytomedicine 10:494–498CrossRefPubMedGoogle Scholar
  59. 59.
    Deng Y, Lu X, Wang L, Li T, Ding Y, Cao H, Zhang Y, Guo X, Yu G (2014) Curcumin inhibits the AKT/NF-κB signaling via CpG demethylation of the promoter and restoration of NEP in the N2a cell line. AAPS J 16(4):649–657CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fujiwara H, Kimura J, Sakamoto M, Yokosuka A, Mimaki Y, Murata K, Yamaguchi K, Ohizumi Y (2014) Nobiletin, a flavone from Citrus depressa, induces gene expression and increases the protein level and activity of neprilysin in SK-N-SH cells. Can J Physiol Pharmacol 92(5):351–355CrossRefPubMedGoogle Scholar
  61. 61.
    Wang P, Su C, Li R, Wang H, Ren Y, Sun H, Yang J, Sun J, Shi J, Tian J, Jiang S (2014) Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J Neurosci Res 92(2):218–231CrossRefPubMedGoogle Scholar
  62. 62.
    Gan L, Meng ZJ, Xiong RB, Guo JQ, Lu XC, Zheng ZW, Deng YP, Luo BD, Zou F, Li H (2015) Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice. Acta Pharmacol Sin 36(5):597–605CrossRefPubMedGoogle Scholar
  63. 63.
    Cabrol C, Huzarska MA, Dinolfo C, Rodriguez MC, Reinstatler L, Ni J, Yeh LA, Cuny GD, Stein RL, Selkoe DJ, Leissring MA (2009) Small-molecule activators of insulin-degrading enzyme discovered through high-throughput compound screening. PLoS ONE 4(4):e5274CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B (2004) Peroxisome-proliferator-activated receptor γ induces a clearance mechanism for the amyloid-β peptide. J Neurosci 24(48):10908–10917CrossRefPubMedGoogle Scholar
  65. 65.
    Madrigal JL, Kalinin S, Richardson JC, Feinstein DL (2007) Neuroprotective actions of noradrenaline: effects on glutathione synthesis and activation of peroxisome proliferator activated receptor δ. J Neurochem 103(5):2092–2101CrossRefPubMedGoogle Scholar
  66. 66.
    Kummer MP, Schwarzenberger R, Sayah-Jeanne S, Dubernet M, Walczak R, Hum DW, Schwartz S, Axt D, Heneka MT (2015) Pan-PPAR modulation effectively protects APP/PS1 mice from amyloid deposition and cognitive deficits. Mol Neurobiol 51(2):661–671CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kalinin S, Richardson JC, Feinstein DL (2009) A PPARδ agonist reduces amyloid burden and brain inflammation in a transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 6:431–437CrossRefPubMedGoogle Scholar
  68. 68.
    Espuny-Camacho I, Dominguez D, Merchiers P, Van Rompaey L, Selkoe D, De Strooper B (2010) Peroxisome proliferator-activated receptor γ enhances the activity of an insulin degrading enzyme-like metalloprotease for amyloid-δ clearance. J Alzheimers Dis 20(4):1119–1132PubMedGoogle Scholar
  69. 69.
    Quan Q, Wang J, Li X, Wang Y (2013) Ginsenoside Rg1 decreases Aβ(1-42) level by upregulating PPARγ and IDE expression in the hippocampus of a rat model of Alzheimer’s disease. PLoS ONE 8(3):e59155CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yang L, Hao J, Zhang J, Xia W, Dong X, Hu X, Kong F, Cui X (2009) Ginsenoside Rg3 promotes beta-amyloid peptide degradation by enhancing gene expression of neprilysin. J Pharm Pharmacol 61(3):375–380CrossRefPubMedGoogle Scholar
  71. 71.
    Jang SK, Yu JM, Kim ST, Kim GH, Park DW, Lee DI, Joo SS (2015) An Aβ42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and Aβ-degrading enzymes in microglia. Eur J Pharmacol 758:1–10CrossRefPubMedGoogle Scholar
  72. 72.
    Kong Y, Ruan L, Qian L, Liu X, Le Y (2010) Norepinephrine promotes microglia to uptake and degrade amyloid β peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci 30(35):11848–11857CrossRefPubMedGoogle Scholar
  73. 73.
    Klein C, Patte-Mensah C, Taleb O, Bourguignon JJ, Schmitt M, Bihel F, Maitre M, Mensah-Nyagan AG (2013) The neuroprotector kynurenic acid increases neuronal cell survival through neprilysin induction. Neuropharmacology 70:254–260CrossRefPubMedGoogle Scholar
  74. 74.
    Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, Singh S, Tolksdorf K, Heneka MT, Lütjohann D, Wunderlich P, Walter J (2010) Statins promote the degradation of extracellular amyloid β-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. J Biol Chem 285(48):37405–37414CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Papadopoulos P, Tong XK, Hamel E (2014) Selective benefits of simvastatin in bitransgenic APPSwe, Ind/TGF-β1 mice. Neurobiol Aging 35(1):203–212CrossRefPubMedGoogle Scholar
  76. 76.
    Du J, Zhang L, Liu S, Wang Z (2010) Palmitic acid and docosahexaenoic acid opposingly regulate the expression of insulin-degrading enzyme in neurons. Pharmazie 65(3):231–232PubMedGoogle Scholar
  77. 77.
    Muangman P, Spenny ML, Tamura RN, Gibran NS (2003) Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells. Shock 19(6):508–512CrossRefPubMedGoogle Scholar
  78. 78.
    Lim CS, Alkon DL (2014) PKCε promotes HuD-mediated neprilysin mRNA stability and enhances neprilysin-induced Aβ degradation in brain neurons. PLoS ONE 9(5):e97756CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Vázquez MC, Vargas LM, Inestrosa NC, Alvarez AR (2009) c-Abl modulates AICD dependent cellular responses: transcriptional induction and apoptosis. J Cell Physiol 220(1):136–143CrossRefPubMedGoogle Scholar
  80. 80.
    Buoso E, Biundo F, Lanni C, Schettini G, Govoni S, Racchi M (2012) AβPP intracellular C-terminal domain function is related to its degradation processes. J Alzheimers Dis 30(2):393–405PubMedGoogle Scholar
  81. 81.
    Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays 22(9):836–845CrossRefPubMedGoogle Scholar
  82. 82.
    Whittle N, Singewald N (2014) HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem Soc Trans 42(2):569–581CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Nunan J, Shearman MS, Checler F, Cappai R, Evin G, Beyreuther K, Masters CL, Small DH (2001) The C-terminal fragment of the Alzheimer’s disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from γ-secretase. Eur J Biochem 268:5329–5336CrossRefPubMedGoogle Scholar
  84. 84.
    Bertrand E, Brouillet E, Caillé I, Bouillot C, Cole GM, Prochiantz A, Allinquant B (2001) A short cytoplasmic domain of the amyloid precursor protein induces apoptosis in vitro and in vivo. Mol Cell Neurosci 18:503–511CrossRefPubMedGoogle Scholar
  85. 85.
    Asai M, Yagishita S, Iwata N, Saido TC, Ishiura S, Maruyama K (2011) An alternative metabolic pathway of amyloid precursor protein C-terminal fragments via cathepsin B in a human neuroglioma model. FASEB J 10:3720–3730CrossRefGoogle Scholar
  86. 86.
    Fantini J, Di Scala C, Yahi N, Troadec JD, Sadelli K, Chahinian H, Garmy N (2014) Bexarotene blocks calcium-permeable ion channels formed by neurotoxic Alzheimer’s β-amyloid peptides. ACS Chem Neurosci 5(3):216–224CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Lefterov I, Schug J, Mounier A, Nam KN, Fitz NF, Koldamova R (2015) RNA-sequencing reveals transcriptional up-regulation of Trem2 in response to bexarotene treatment. Neurobiol Dis 82:132–140CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Natalia N. Nalivaeva
    • 1
    • 2
  • Nikolai D. Belyaev
    • 1
  • Anthony J. Turner
    • 1
  1. 1.School of Molecular and Cellular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
  2. 2.I.M.Sechenov Institute of Evolutionary Physiology and BiochemistryPetersburgRussia

Personalised recommendations