Neurochemical Research

, Volume 40, Issue 3, pp 501–513 | Cite as

Differential Expression of Doublecortin and Microglial Markers in the Rat Brain Following Fractionated Irradiation

  • Sona Balentova
  • Eva Hajtmanova
  • Marian Adamkov
  • Jan Lehotsky
Original Paper


Ionizing radiation induces altered brain tissue homeostasis and can lead to morphological and functional deficits. In this study, adult male Wistar rats received whole-body exposure with fractionated doses of gamma rays (a total dose of 5 Gy) and were investigated 30 and 60 days later. Immunohistochemistry and confocal microscopy were used to determine proliferation rate of cells residing or derived from the forebrain anterior subventricular zone (SVZa) and microglia distributed along and/or adjacent to subventricular zone–olfactory bulb axis. Cell counting was performed in four anatomical parts along the well-defined pathway, known as the rostral migratory stream (RMS) represented by the SVZa, vertical arm, elbow and horizontal arm of the RMS. Different spatiotemporal distribution pattern of cell proliferation was seen up to 60 days after irradiation through the migratory pathway. A population of neuroblasts underwent less evident changes up to 60 days after treatment. Fractionated exposure led to decline or loss of resting as well as reactive forms of microglia until 60 days after irradiation. Results showed that altered expression of the SVZa derived cells and ultimative decrease of microglia may contribute to development of radiation-induced late effects.


Fractionated irradiation SVZ-OB axis Cell proliferation Neuroblast Microglia 



The authors are grateful to colleagues from the Department of Radiotherapy and Oncology of Martin University Hospital for technical assistance with the irradiation. We would like to express our thanks to Mrs. M. Kondekova, Mrs. A. Resetarova and Mrs. Z. Cetlova for their excellent technical assistance. This study was supported by a VEGA grant No. 1/0050/11 and by the projects “Center for Biomedical Research, (BioMed), code 26220220153” and “Identification of novel markers in the diagnostic panel of neurological diseases” co-financed from EU sources and the European Regional Development Fund.


  1. 1.
    Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061PubMedGoogle Scholar
  2. 2.
    Kempermann G (2002) Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 22:635–638PubMedGoogle Scholar
  3. 3.
    Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686CrossRefPubMedGoogle Scholar
  4. 4.
    Carleton A, Petreanu LT, Lansford R et al (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 5:507–518Google Scholar
  5. 5.
    Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569CrossRefPubMedGoogle Scholar
  6. 6.
    Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193CrossRefPubMedGoogle Scholar
  7. 7.
    Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA 93(25):14895–14900CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in adult mammalian brain. Science 264(5162):1145–1148CrossRefPubMedGoogle Scholar
  9. 9.
    Winner B, Cooper-Kuhn CM, Aigner R et al (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16(9):1681–1689CrossRefPubMedGoogle Scholar
  10. 10.
    Smith CM, Luskin MB (1998) Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream. Dev Dyn 213(2):220–227CrossRefPubMedGoogle Scholar
  11. 11.
    Petreanu L, Alvarez-Buylla A (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci 22(14):6106–6113PubMedGoogle Scholar
  12. 12.
    Peissner W, Kocher M, Treuer H et al (1999) Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Mol Brain Res 71:61–68CrossRefPubMedGoogle Scholar
  13. 13.
    Amano T, Inamura T, Wu CM et al (2002) Effects of single low dose irradiation on subventricular zone cells in juvenile brain. Neurol Res 24:809–816CrossRefPubMedGoogle Scholar
  14. 14.
    Mizumatsu S, Monje LM, Morhardt DR et al (2003) Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 63:4021–4027PubMedGoogle Scholar
  15. 15.
    Snyder JS, Hong N, McDonald RJ, Wojtowicz JM (2005) A role for adult hippocampal neurogenesis in spatial long-term memory. Neuroscience 130:843–852CrossRefPubMedGoogle Scholar
  16. 16.
    Balentova S, Racekova E, Martoncikova M, Misurova E (2006) Cell proliferation in the adult rat rostral migratory stream following exposure to gamma irradiation. Cell Mol Neurobiol 26:1129–1137CrossRefGoogle Scholar
  17. 17.
    Lazarini F, Mouthon MA, Gheusi G et al (2009) Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice. PLoS ONE 4:e7017CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Balentova S, Hajtmanova E, Mellova Y et al (2011) Alterations in the rat forebrain apoptosis following exposure to ionizing radiation. Biologia (Bratisl.) 66:701–705CrossRefGoogle Scholar
  19. 19.
    Tada E, Yang C, Gobbel GT et al (1999) Long-term impairment of subependymal repopulation following damage by ionizing radiation. Exp Neurol 160:66–77CrossRefPubMedGoogle Scholar
  20. 20.
    Cicciarello R, d’Avella D, Gagliardi ME et al (1996) Time-related ultrastructural changes in an experimental model of whole brain irradiation. Neurosurgery 38:772–779CrossRefPubMedGoogle Scholar
  21. 21.
    Gaber MW, Sabek OM, Fukatsu K et al (2003) The differences in ICAM-1 and TNF-α expression between high single fractions and fractionated irradiation in mouse brain. Int J Radiat Biol 79:359–966CrossRefPubMedGoogle Scholar
  22. 22.
    Yuan H, Gaber MW, Boyd K et al (2006) Effects of fractionated radiation on the brain vasculature in a murine model: blood–brain barrier permeability, astrocyte proliferation, and ultrastructural changes. Int J Radiat Oncol Biol Phys 66:860–866CrossRefPubMedGoogle Scholar
  23. 23.
    Rosi S, Andres-Mach M, Fishman KM et al (2008) Cranial irradiation alters the behaviorally induced immediate-early gene Arc (activity-regulated cytoskeleton-associated protein). Cancer Res 68:9763–9770CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Wilson CM, Gaber MW, Sabek OM et al (2009) Radiation-induced astrogliosis and blood–brain barrier damage can be abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys 74:934–941CrossRefPubMedGoogle Scholar
  25. 25.
    Machida M, Lonart G, Britten RA (2010) Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes. Radiat Res 174:618–623CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou H, Liu Z, Liu J et al (2011) Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic findings. AJNR Am J Neuroradiol 32:1795–1800CrossRefPubMedGoogle Scholar
  27. 27.
    Hailer NP, Grampp A, Nitsch R (1999) Proliferation of microglia and astrocytes in the dentate gyrus following entorhinal cortex lesion: a quantitative bromodeoxyuridine-labelling study. Eur J Neurosci 11:3359–3364CrossRefPubMedGoogle Scholar
  28. 28.
    Lewis CA, Manning J, Rossi F, Krieger C (2012) The neuroinflammatory response in ALS: the roles of microglia and T Cells. Neurol Res Int 2012:803701CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Hwang SY, Jung JS, Kim TH et al (2006) Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiol Dis 21:457–467CrossRefPubMedGoogle Scholar
  30. 30.
    Lee WH, Sonntag WE, Mitschelen M et al (2010) Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol 86:132–144CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Ginhoux F, Lim S, Hoeffel G et al (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Monje ML, Mizumatsu S, Fike JR, Palmer TD (2002) Irradiation induces neural precursor-cell dysfunction. Nat Med 8:955–962CrossRefPubMedGoogle Scholar
  33. 33.
    Raber J, Rola R, Lefevour A et al (2004) Radiation induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Rad Res 162:39–47CrossRefGoogle Scholar
  34. 34.
    Schindler MK, Forbes ME, Robbins ME, Riddle DR (2008) Aging-dependent changes in the radiation response of the adult rat brain. Int J Radiat Oncol Biol Phys 70:826–834CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Balentova S, Hajtmanova E, Plevkova J et al (2013) Fractionated irradiation-induced altered spatio-temporal cell distribution in the rat forebrain. Acta Histochem 115:308–314CrossRefPubMedGoogle Scholar
  36. 36.
    Al-Khazraji Medeiros PJ, Novielli NM, Jackson DN (2011) An automated cell-counting algorithm for fluorescently-stained cells in migration assays. Biol Proced Online 13:9CrossRefGoogle Scholar
  37. 37.
    Meruvia-Pastor OE, Soh J, Schmidt EJ et al (2011) Estimating cell count and distribution in labeled histological samples using incremental cell search. Int J Biomed Imaging 2011:874702CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  39. 39.
    Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec (Hoboken) 296:378–381CrossRefGoogle Scholar
  40. 40.
    Balentova S, Hajtmanova E, Kinclova I et al (2013) Long-term alterations of cell population in the adult rat forebrain following exposure to fractionated doses of ionizing radiation. Gen Physiol Biophys 32:91–100CrossRefPubMedGoogle Scholar
  41. 41.
    Wojtowicz JM (2006) Irradiation as an experimental tool in studies of adult neurogenesis. Hippocampus 16:261–266CrossRefPubMedGoogle Scholar
  42. 42.
    Shinohara C, Gobbel GT, Lamborn KR et al (1997) Apoptosis in the subependyma of young adult rats after single and fractionated doses of X-rays. Cancer Res 57:2694–2702PubMedGoogle Scholar
  43. 43.
    Winocur G, Wojtowicz MJ, Sekeres M et al (2006) Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus 16:296–304CrossRefPubMedGoogle Scholar
  44. 44.
    Francis F, Koulakoff A, Boucher D et al (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256CrossRefPubMedGoogle Scholar
  45. 45.
    Gleeson JG, Lin PT, Flanagan LA et al (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271CrossRefPubMedGoogle Scholar
  46. 46.
    Brown JP, Couillard-Despres S, Cooper-Kuhn CM et al (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10CrossRefPubMedGoogle Scholar
  47. 47.
    Whitman MC, Fan W, Rela L et al (2009) Blood vessels form a migratory scaffold in the rostral migratory stream. J Comp Neurol 516(2):94–104CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Balentova S, Hajtmanova E, Trylcova R et al (2014) Ionizing radiation induced long-term alterations in the adult rat rostral migratory stream. Acta Histochem 116:265–271CrossRefPubMedGoogle Scholar
  49. 49.
    Kirschenbaum B, Doetsch F, Lois C, Alvarez-Buylla A (1999) Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci 19:2171–2180PubMedGoogle Scholar
  50. 50.
    Romanko MJ, Rola R, Fike JR et al (2004) Roles of the mammalian subventricular zone in cell replacement after brain injury. Prog Neurobiol 74:77–99CrossRefPubMedGoogle Scholar
  51. 51.
    Lehotsky J, Urban P, Pavlikova M et al (2009) Molecular mechanisms leading to neuroprotection/ischemic tolerance: effect of preconditioning on the stress reaction of endoplasmic reticulum. Cell Mol Neurobiol 29:917–925CrossRefPubMedGoogle Scholar
  52. 52.
    Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 4:273–284CrossRefPubMedGoogle Scholar
  53. 53.
    Curtis MA, Kam M, Nannmark U et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315(5816):1243–1249CrossRefPubMedGoogle Scholar
  54. 54.
    Curtis MA, Monzo HJ, Faull RLM (2009) The rostral migratory stream and olfactory system: smell, disease and slippery cells. Prog Brain Res 175:33–42CrossRefPubMedGoogle Scholar
  55. 55.
    Sanai N, Nguyen T, Ihrie RA et al (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478(7369):382–386CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Wang C, Liu F, Liu YY et al (2011) Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res 21(11):1534–1550CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Bouab M, Paliouras GN, Aumont A et al (2011) Aging of the subventricular zone neural stem cell niche: evidence for quiescence-associated changes between early and mid-adulthood. Neuroscience 173:135–149CrossRefPubMedGoogle Scholar
  58. 58.
    Van Den Berge S, Middeldorp J, Zhang C, Curtis M (2010) Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-δ. Aging Cell 9:313–326CrossRefPubMedGoogle Scholar
  59. 59.
    Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85(3):352–370CrossRefPubMedGoogle Scholar
  60. 60.
    Hellström NA, Lindberg OR, Ståhlberg A et al (2011) Unique gene expression patterns indicate microglial contribution to neural stem cell recovery following irradiation. Mol Cell Neurosci 46:710–719CrossRefPubMedGoogle Scholar
  61. 61.
    Dalmau I, Vela JM, Gonzales B, Castellano B (1998) Expression of purine metabolism-related enzymes by microglial cells in the developing rat brain. J Comp Neurol 398:333–346CrossRefPubMedGoogle Scholar
  62. 62.
    Wirenfeldt M, Dalmau I, Finsen B (2003) Estimation of absolute microglial cell numbers in mouse fascia dentate using unbiased and efficient stereological cell counting principles. Glia 44:129–139CrossRefPubMedGoogle Scholar
  63. 63.
    Ladeby R, Wirenfeldt M, Garcia-Ovejero D et al (2005) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Rev 48:196–206CrossRefPubMedGoogle Scholar
  64. 64.
    Gonzalez-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240CrossRefPubMedGoogle Scholar
  65. 65.
    Rock RB, Gekker G, Hu S et al (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17:942–964CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Vollmann H, Wölfel S, Ohneseit P et al (2007) Differential expression of egr1 and activation of microglia following irradiation in the rat brain. Strahlenther Onkol 183:248–255CrossRefPubMedGoogle Scholar
  67. 67.
    Lee TC, Greene-Schloesser D, Payne V et al (2012) Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiat Res 178:46–56CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Conner KR, Payne VS, Forbes ME et al (2010) Effects of the AT1 receptor antagonist L-158,809 on microglia and neurogenesis after fractionated whole-brain irradiation. Radiat Res 173(1):49–61CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Schnegg CI, Greene-Schloesser D, Kooshki M et al (2013) The PPARδ agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med 61C:1–9CrossRefGoogle Scholar
  70. 70.
    Martoncikova M (2004) Rostral migratory stream of rat during early postnatal development. Dissertation, P.J. Safarik UniversityGoogle Scholar
  71. 71.
    Krishna TS, Kong XP, Gary S et al (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233–1243CrossRefPubMedGoogle Scholar
  72. 72.
    Maga G, Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116:3051–3060CrossRefPubMedGoogle Scholar
  73. 73.
    Gleeson JG, Allen KM, Fox JW et al (1998) Doublecortin, a brain specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72CrossRefPubMedGoogle Scholar
  74. 74.
    Schaar BT, Kinoshita K, McConnell SK (2004) Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 41:203–213CrossRefPubMedGoogle Scholar
  75. 75.
    Milligan CE, Cunningham TJ, Levitt P et al (1991) Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J Comp Neurol 314:125–135CrossRefPubMedGoogle Scholar
  76. 76.
    Zassler B, Schermer C, Humpel C (2003) Protein kinase C and phosphoinositol-3-kinase mediate differentiation or proliferation of slice-derived rat microglia. Pharmacol 67:211–215CrossRefGoogle Scholar
  77. 77.
    Barbe MF, Barr AE, Gorzelany I et al (2003) Chronic repetitive reaching and grasping results in decreased motor performance and widespread tissue responses in a rat model of MSD. J Orthopaedic Res 21:167–176CrossRefGoogle Scholar
  78. 78.
    Collazos-Castro JE, Soto VM, Gutiérrez-Dávila M, Nieto-Sampedro M (2005) Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat. J Neurotrauma 22:544–558CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sona Balentova
    • 1
  • Eva Hajtmanova
    • 2
  • Marian Adamkov
    • 1
  • Jan Lehotsky
    • 3
  1. 1.Jessenius Faculty of Medicine in Martin, Institute of Histology and EmbryologyComenius University in BratislavaMartinSlovak Republic
  2. 2.Department of Radiotherapy and OncologyMartin University HospitalMartinSlovak Republic
  3. 3.Jessenius Faculty of Medicine, Institute of Medical BiochemistryComenius University in BratislavaMartinSlovak Republic

Personalised recommendations