Neurochemical Research

, Volume 40, Issue 12, pp 2570–2582 | Cite as

Glutathione-Dependent Detoxification Processes in Astrocytes

  • Ralf Dringen
  • Maria Brandmann
  • Michaela C. Hohnholt
  • Eva-Maria Blumrich


Astrocytes have a pivotal role in brain as partners of neurons in homeostatic and metabolic processes. Astrocytes also protect other types of brain cells against the toxicity of reactive oxygen species and are considered as first line of defence against the toxic potential of xenobiotics. A key component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which generate GSH conjugates that are efficiently exported from the cells by multidrug resistance proteins. Moreover, GSH reacts with the reactive endogenous carbonyls methylglyoxal and formaldehyde to intermediates which are substrates of detoxifying enzymes. In this article we will review the current knowledge on the GSH metabolism of astrocytes with a special emphasis on GSH-dependent detoxification processes.


Brain cells Conjugation GSH Peroxidases Oxidative stress S-transferases 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Dringen R, Hamprecht B (1998) Glutathione restoration as indicator for cellular metabolism of astroglial cells. Dev Neurosci 20:401–407PubMedCrossRefGoogle Scholar
  2. 2.
    Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta 1830:3217–3266PubMedCrossRefGoogle Scholar
  3. 3.
    Ballatori N, Krance SM, Notenboom S, Shi S, Tieu K, Hammond CL (2009) Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 390:191–214PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI (2007) The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113:234–258PubMedCrossRefGoogle Scholar
  5. 5.
    Morris D, Khurasany M, Nguyen T, Kim J, Guilford F, Mehta R, Gray D, Saviola B, Venketaraman V (2013) Glutathione and infection. Biochim Biophys Acta 1830:3329–3349PubMedCrossRefGoogle Scholar
  6. 6.
    Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C (2013) Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev 2013:972913PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Aoyama K, Nakaki T (2013) Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 14:21021–21044PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4:1399–1440PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Saharan S, Mandal PK (2014) The emerging role of glutathione in Alzheimer’s disease. J Alzheimers Dis 40:519–529PubMedGoogle Scholar
  11. 11.
    Carvalho AN, Lim JL, Nijland PG, Witte ME, Van Horssen J (2014) Glutathione in multiple sclerosis: more than just an antioxidant? Mult Scler 20:1425–1431PubMedCrossRefGoogle Scholar
  12. 12.
    Kulak A, Steullet P, Cabungcal JH, Werge T, Ingason A, Cuenod M, Do KQ (2013) Redox dysregulation in the pathophysiology of schizophrenia and bipolar disorder: insights from animal models. Antioxid Redox Signal 18:1428–1443PubMedCrossRefGoogle Scholar
  13. 13.
    Currais A, Maher P (2013) Functional consequences of age-dependent changes in glutathione status in the brain. Antioxid Redox Signal 19:813–822PubMedCrossRefGoogle Scholar
  14. 14.
    Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bernardinelli Y, Muller D, Nikonenko I (2014) Astrocyte-synapse structural plasticity. Neural Plast 2014:232105PubMedCentralPubMedGoogle Scholar
  16. 16.
    Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188PubMedCrossRefGoogle Scholar
  17. 17.
    Verkhratsky A, Nedergaard M, Hertz L (2014) Why are astrocytes important? Neurochem Res. doi: 10.1007/s11064-014-1403-2
  18. 18.
    Bouzier-Sore AK, Pellerin L (2013) Unraveling the complex metabolic nature of astrocytes. Front Cell Neurosci 7:179PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Schousboe A, Bak LK, Waagepetersen HS (2013) Astrocytic Control of Biosynthesis and Turnover of the Neurotransmitters Glutamate and GABA. Front Endocrinol (Lausanne) 4:102Google Scholar
  20. 20.
    Dienel GA, Cruz NF (2014) Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis. doi: 10.1007/s11011-014-9493-8
  21. 21.
    Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79:157–165PubMedCrossRefGoogle Scholar
  23. 23.
    Schmidt MM, Dringen R (2012) Glutathione (GSH) synthesis and metabolism. In: Gruetter R, Choi IY (eds) Advances in neurobiology. Springer, New York, pp 1029–1050Google Scholar
  24. 24.
    Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32:1884–1890PubMedCrossRefGoogle Scholar
  25. 25.
    Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62:556–565PubMedCrossRefGoogle Scholar
  26. 26.
    Hohnholt MC, Dringen R (2013) Uptake and metabolism of iron and iron oxide nanoparticles in brain astrocytes. Biochem Soc Trans 41:1588–1592PubMedCrossRefGoogle Scholar
  27. 27.
    Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57PubMedCrossRefGoogle Scholar
  28. 28.
    Fernandez-Fernandez S, Almeida A, Bolanos JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 442:3–12CrossRefGoogle Scholar
  29. 29.
    Bolanos JP, Heales SJ, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J Neurochem 64:1965–1972PubMedCrossRefGoogle Scholar
  30. 30.
    Barker JE, Bolanos JP, Land JM, Clark JB, Heales SJ (1996) Glutathione protects astrocytes from peroxynitrite-mediated mitochondrial damage: implications for neuronal/astrocytic trafficking and neurodegeneration. Dev Neurosci 18:391–396PubMedCrossRefGoogle Scholar
  31. 31.
    Sagara J, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61:1672–1676PubMedCrossRefGoogle Scholar
  32. 32.
    Bolanos JP, Heales SJR, Peuchen S, Barker JE, Land JM, Clark JB (1996) Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radical Biol Med 21:995–1000CrossRefGoogle Scholar
  33. 33.
    Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–569PubMedGoogle Scholar
  34. 34.
    Valdovinos-Flores C, Gonsebatt ME (2012) The role of amino acid transporters in GSH synthesis in the blood-brain barrier and central nervous system. Neurochem Int 61:405–414PubMedCrossRefGoogle Scholar
  35. 35.
    Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671PubMedCrossRefGoogle Scholar
  36. 36.
    Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain. Eur J Biochem 267:4912–4916PubMedCrossRefGoogle Scholar
  37. 37.
    Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516PubMedCrossRefGoogle Scholar
  38. 38.
    Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJ (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62:45–53PubMedCrossRefGoogle Scholar
  40. 40.
    Gegg ME, Clark JB, Heales SJ (2002) Determination of glutamate-cysteine ligase (γ-glutamylcysteine synthetase) activity by high-performance liquid chromatography and electrochemical detection. Anal Biochem 304:26–32PubMedCrossRefGoogle Scholar
  41. 41.
    Lavoie S, Chen Y, Dalton TP, Gysin R, Cuenod M, Steullet P, Do KQ (2009) Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. J Neurochem 108:1410–1422PubMedCrossRefGoogle Scholar
  42. 42.
    Devesa A, O’Connor JE, Garcia C, Puertes IR, Vina JR (1993) Glutathione metabolism in primary astrocyte cultures: flow cytometric evidence of heterogeneous distribution of GSH content. Brain Res 618:181–189PubMedCrossRefGoogle Scholar
  43. 43.
    Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, Dringen R (2006) The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Nurochem 97:373–384CrossRefGoogle Scholar
  44. 44.
    Vargas MR, Johnson JA (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17PubMedCrossRefGoogle Scholar
  45. 45.
    Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44PubMedCrossRefGoogle Scholar
  46. 46.
    Gupta K, Patani R, Baxter P, Serio A, Story D, Tsujita T, Hayes JD, Pedersen RA, Hardingham GE, Chandran S (2012) Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms. Cell Death Differ 19:779–787PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, Zeng W, Ryan S, Yamamoto M, Lukashev M, Rhodes KJ (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341:274–284PubMedCrossRefGoogle Scholar
  48. 48.
    Shin JH, Kim SW, Jin Y, Kim ID, Lee JK (2012) Ethyl pyruvate-mediated Nrf2 activation and hemeoxygenase 1 induction in astrocytes confer protective effects via autocrine and paracrine mechanisms. Neurochem Int 61:89–99PubMedCrossRefGoogle Scholar
  49. 49.
    Sun X, Erb H, Murphy TH (2005) Coordinate regulation of glutathione metabolism in astrocytes by Nrf2. Biochem Biophys Res Commun 326:371–377PubMedCrossRefGoogle Scholar
  50. 50.
    Malone PE, Hernandez MR (2007) 4-Hydroxynonenal, a product of oxidative stress, leads to an antioxidant response in optic nerve head astrocytes. Exp Eye Res 84:444–454PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Lin SX, Lisi L, Dello Russo C, Polak PE, Sharp A, Weinberg G, Kalinin S, Feinstein DL (2011) The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 3:e00055PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Had-Aissouni L (2012) Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids 42:181–197PubMedCrossRefGoogle Scholar
  53. 53.
    Szoke K, Hartel K, Grass D, Hirrlinger PG, Hirrlinger J, Hulsmann S (2006) Glycine transporter 1 expression in the ventral respiratory group is restricted to protoplasmic astrocytes. Brain Res 1119:182–189PubMedCrossRefGoogle Scholar
  54. 54.
    Kranich O, Dringen R, Sandberg M, Hamprecht B (1998) Utilization of cysteine and cysteine precursors for the synthesis of glutathione in astroglial cultures: preference for cystine. Glia 22:11–18PubMedCrossRefGoogle Scholar
  55. 55.
    Kranich O, Hamprecht B, Dringen R (1996) Different preferences in the utilization of amino acids for glutathione synthesis in cultured neurons and astroglial cells derived from rat brain. Neurosci Lett 219:211–214PubMedCrossRefGoogle Scholar
  56. 56.
    Bender AS, Reichelt W, Norenberg MD (2000) Characterization of cystine uptake in cultured astrocytes. Neurochem Int 37:269–276PubMedCrossRefGoogle Scholar
  57. 57.
    Shanker G, Aschner M (2001) Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport. J Neurosci Res 66:998–1002PubMedCrossRefGoogle Scholar
  58. 58.
    McBean GJ (2012) The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids 42:199–205PubMedCrossRefGoogle Scholar
  59. 59.
    Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303PubMedCrossRefGoogle Scholar
  60. 60.
    Liddell JR, Hoepken HH, Crack PJ, Robinson SR, Dringen R (2006) Glutathione peroxidase 1 and glutathione are required to protect mouse astrocytes from iron-mediated hydrogen peroxide toxicity. J Neurosci Res 84:578–586PubMedCrossRefGoogle Scholar
  61. 61.
    Liddell JR, Dringen R, Crack PJ, Robinson SR (2006) Glutathione peroxidase 1 and a high cellular glutathione concentration are essential for effective organic hydroperoxide detoxification in astrocytes. Glia 54:873–879PubMedCrossRefGoogle Scholar
  62. 62.
    Skorupa A, Urbach S, Vigy O, King MA, Chaumont-Dubel S, Prehn JH, Marin P (2013) Angiogenin induces modifications in the astrocyte secretome: relevance to amyotrophic lateral sclerosis. J Proteomics 91:274–285PubMedCrossRefGoogle Scholar
  63. 63.
    Savaskan NE, Borchert A, Brauer AU, Kuhn H (2007) Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med 43:191–201PubMedCrossRefGoogle Scholar
  64. 64.
    Gutterer JM, Dringen R, Hirrlinger J, Hamprecht B (1999) Purification of glutathione reductase from bovine brain, generation of an antiserum, and immunocytochemical localization of the enzyme in neural cells. J Neurochem 73:1422–1430PubMedCrossRefGoogle Scholar
  65. 65.
    Petters C, Dringen R (2014) Comparison of primary and secondary rat astrocyte cultures regarding glucose and glutathione metabolism and the accumulation of iron oxide nanoparticles. Neurochem Res 39:46–58PubMedCrossRefGoogle Scholar
  66. 66.
    Dringen R, Gutterer JM (2002) Glutathione reductase from bovine brain. Methods Enzymol 348:281–288PubMedCrossRefGoogle Scholar
  67. 67.
    Garcia-Nogales P, Almeida A, Fernadez E, Medina JM, Bolanos JP (1999) Induction of glucose-6-phosphate dehydrogenase by lipopolysaccharide contributes to preventing nitric oxide-mediated glutathione depletion in cultrued rat astrocytes. J Neurochem 72:1750–1758PubMedCrossRefGoogle Scholar
  68. 68.
    Kussmaul L, Hamprecht B, Dringen R (1999) The detoxification of cumene hydroperoxide by the glutathione system of cultured astroglial cells hinges on hexose availability for the regeneration of NADPH. J Neurochem 73:1246–1253PubMedCrossRefGoogle Scholar
  69. 69.
    Dringen R, Hoepken HH, Minich T, Ruedig C (2007) Pentose phosphate pathway and NADPH metabolism. In: Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology, 3rd edn. Springer, New York, pp 41–62CrossRefGoogle Scholar
  70. 70.
    Takahashi S, Izawa Y, Suzuki N (2012) Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 4:e00078PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Bishop GM, Dringen R, Robinson SR (2007) Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic Biol Med 42:1222–1230PubMedCrossRefGoogle Scholar
  72. 72.
    Dringen R, Hamprecht B (1997) Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells. Brain Res 759:67–75PubMedCrossRefGoogle Scholar
  73. 73.
    Dringen R, Kussmaul L, Hamprecht B (1998) Rapid clearance of tertiary butyl hydroperoxide by cultured astroglial cells via oxidation of glutathione. Glia 23:139–145PubMedCrossRefGoogle Scholar
  74. 74.
    Hirrlinger J, Konig J, Keppler D, Lindenau J, Schulz JB, Dringen R (2001) The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J Neurochem 76:627–636PubMedCrossRefGoogle Scholar
  75. 75.
    Hirrlinger J, Schulz JB, Dringen R (2002) Effects of dopamine on the glutathione metabolism of cultured astroglial cells: implications for Parkinson’s disease. J Neurochem 82:458–467PubMedCrossRefGoogle Scholar
  76. 76.
    Dringen R, Kranich O, Hamprecht B (1997) The γ-glutamyl transpeptidase inhibitor acivicin preserves glutathione released by astroglial cells in culture. Neurochem Res 22:727–733PubMedCrossRefGoogle Scholar
  77. 77.
    Hirrlinger J, Schulz JB, Dringen R (2002) Glutathione release from cultured brain cells: multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69:318–326PubMedCrossRefGoogle Scholar
  78. 78.
    Ballatori N, Krance SM, Marchan R, Hammond CL (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 30:13–28PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Keppler D (2011) Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol 201:299–323Google Scholar
  80. 80.
    Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 54:95–117PubMedCrossRefGoogle Scholar
  81. 81.
    Hirrlinger J, Konig J, Dringen R (2002) Expression of mRNAs of multidrug resistance proteins (Mrps) in cultured rat astrocytes, oligodendrocytes, microglial cells and neurones. J Neurochem 82:716–719PubMedCrossRefGoogle Scholar
  82. 82.
    Hirrlinger J, Moeller H, Kirchhoff F, Dringen R (2005) Expression of multidrug resistance proteins (Mrps) in astrocytes of the mouse brain: a single cell RT-PCR study. Neurochem Res 30:1237–1244PubMedCrossRefGoogle Scholar
  83. 83.
    Nies AT, Jedlitschky G, Konig J, Herold-Mende C, Steiner HH, Schmitt HP, Keppler D (2004) Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–360PubMedCrossRefGoogle Scholar
  84. 84.
    Mercier C, Masseguin C, Roux F, Gabrion J, Scherrmann JM (2004) Expression of P-glycoprotein (ABCB1) and Mrp1 (ABCC1) in adult rat brain: focus on astrocytes. Brain Res 1021:32–40PubMedCrossRefGoogle Scholar
  85. 85.
    Dallas S, Miller DS, Bendayan R (2006) Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 58:140–161PubMedCrossRefGoogle Scholar
  86. 86.
    Aronica E, Sisodiya SM, Gorter JA (2012) Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 64:919–929PubMedCrossRefGoogle Scholar
  87. 87.
    Stridh MH, Correa F, Nodin C, Weber SG, Blomstrand F, Nilsson M, Sandberg M (2010) Enhanced glutathione efflux from astrocytes in culture by low extracellular Ca2+ and curcumin. Neurochem Res 35:1231–1238PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Rana S, Dringen R (2007) Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415:45–48PubMedCrossRefGoogle Scholar
  89. 89.
    Tulpule K, Schmidt MM, Boecker K, Goldbaum O, Richter-Landsberg C, Dringen R (2012) Formaldehyde induces rapid glutathione export from viable oligodendroglial OLN-93 cells. Neurochem Int 61:1302–1313PubMedCrossRefGoogle Scholar
  90. 90.
    Murthy CR, Bender AS, Dombro RS, Bai G, Norenberg MD (2000) Elevation of glutathione levels by ammonium ions in primary cultures of rat astrocytes. Neurochem Int 37:255–268PubMedCrossRefGoogle Scholar
  91. 91.
    Sagara J, Makino N, Bannai S (1996) Glutathione efflux from cultured astrocytes. J Neurochem 66:1876–1881PubMedCrossRefGoogle Scholar
  92. 92.
    Scheiber IF, Dringen R (2011) Copper-treatment increases the cellular GSH content and accelerates GSH export from cultured rat astrocytes. Neurosci Lett 498:42–46PubMedCrossRefGoogle Scholar
  93. 93.
    Bulcke F, Dringen R (2014) Copper oxide nanoparticles stimulate glycolytic flux and increase the cellular contents of glutathione and metallothioneins in cultured astrocytes. Neurochem Res. doi: 10.1007/s11064-014-1458-0
  94. 94.
    Gegg ME, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, Heales SJ (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 86:228–237PubMedCrossRefGoogle Scholar
  95. 95.
    Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L (2006) Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem 97:687–696PubMedCrossRefGoogle Scholar
  96. 96.
    Tulpule K, Dringen R (2011) Formaldehyde stimulates Mrp1-mediated glutathione deprivation of cultured astrocytes. J Neurochem 116:626–635PubMedCrossRefGoogle Scholar
  97. 97.
    Meyer N, Koehler Y, Tulpule K, Dringen R (2013) Arsenate accumulation and arsenate-induced glutathione export in astrocyte-rich primary cultures. Neurochem Int 62:1012–1019PubMedCrossRefGoogle Scholar
  98. 98.
    Tadepalle N, Koehler Y, Brandmann M, Meyer N, Dringen R (2014) Arsenite stimulates glutathione export and glycolytic flux in viable primary rat brain astrocytes. Neurochem Int 76:1–11PubMedCrossRefGoogle Scholar
  99. 99.
    Arend C, Brandmann M, Dringen R (2013) The antiretroviral protease inhibitor ritonavir accelerates glutathione export from cultured primary astrocytes. Neurochem Res 38:732–741PubMedCrossRefGoogle Scholar
  100. 100.
    Brandmann M, Tulpule K, Schmidt MM, Dringen R (2012) The antiretroviral protease inhibitors indinavir and nelfinavir stimulate Mrp1-mediated GSH export from cultured brain astrocytes. J Neurochem 120:78–92PubMedCrossRefGoogle Scholar
  101. 101.
    Gennuso F, Fernetti C, Tirolo C, Testa N, L’Episcopo F, Caniglia S, Morale MC, Ostrow JD, Pascolo L, Tiribelli C, Marchetti B (2004) Bilirubin protects astrocytes from its own toxicity by inducing up-regulation and translocation of multidrug resistance-associated protein 1 (Mrp1). Proc Natl Acad Sci USA 101:2470–2475PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Ronaldson PT, Bendayan R (2008) HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem 106:1298–1313PubMedCrossRefGoogle Scholar
  103. 103.
    Castellano I, Merlino A (2012) γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications. Cell Mol Life Sci 69:3381–3394PubMedCrossRefGoogle Scholar
  104. 104.
    Dringen R, Hamprecht B, Broer S (1998) The peptide transporter PepT2 mediates the uptake of the glutathione precursor CysGly in astroglia-rich primary cultures. J Neurochem 71:388–393PubMedCrossRefGoogle Scholar
  105. 105.
    Dringen R, Gutterer JM, Gros C, Hirrlinger J (2001) Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 66:1003–1008PubMedCrossRefGoogle Scholar
  106. 106.
    Aoyama K, Nakaki T (2013) Neuroprotective properties of the excitatory amino acid carrier 1 (EAAC1). Amino Acids 45:133–142PubMedCrossRefGoogle Scholar
  107. 107.
    Zafra F, Gimenez C (2008) Glycine transporters and synaptic function. IUBMB Life 60:810–817PubMedCrossRefGoogle Scholar
  108. 108.
    Cabezas R, El-Bacha RS, Gonzalez J, Barreto GE (2012) Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 74:80–90PubMedCrossRefGoogle Scholar
  109. 109.
    Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11:2481–2504PubMedCrossRefGoogle Scholar
  110. 110.
    Edmondson DE (2014) Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Curr Pharm Des 20:155–160PubMedCrossRefGoogle Scholar
  111. 111.
    Shichiri M (2014) The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr 54:151–160PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Liddell JR, Robinson SR, Dringen R (2004) Endogenous glutathione and catalase protect cultured rat astrocytes from the iron-mediated toxicity of hydrogen peroxide. Neurosci Lett 364:164–167PubMedCrossRefGoogle Scholar
  113. 113.
    Dringen R, Kussmaul L, Gutterer JM, Hirrlinger J, Hamprecht B (1999) The glutathione system of peroxide detoxification is less efficient in neurons than in astroglial cells. J Neurochem 72:2523–2530PubMedCrossRefGoogle Scholar
  114. 114.
    Dowell JA, Johnson JA (2013) Mechanisms of Nrf2 protection in astrocytes as identified by quantitative proteomics and siRNA screening. PLoS ONE 8:e70163PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Hirrlinger J, Gutterer JM, Kussmaul L, Hamprecht B, Dringen R (2000) Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species. Dev Neurosci 22:384–392PubMedCrossRefGoogle Scholar
  116. 116.
    Hirrlinger J, Resch A, Gutterer JM, Dringen R (2002) Oligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells. J Neurochem 82:635–644PubMedCrossRefGoogle Scholar
  117. 117.
    Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Protoc 2:223–228CrossRefGoogle Scholar
  118. 118.
    Poynton RA, Hampton MB (2014) Peroxiredoxins as biomarkers of oxidative stress. Biochim Biophys Acta 1840:906–912PubMedCrossRefGoogle Scholar
  119. 119.
    Liddell JR, Robinson SR, Dringen R, Bishop GM (2010) Astrocytes retain their antioxidant capacity into advanced old age. Glia 58:1500–1509PubMedGoogle Scholar
  120. 120.
    Liddell JR, Zwingmann C, Schmidt MM, Thiessen A, Leibfritz D, Robinson SR, Dringen R (2009) Sustained hydrogen peroxide stress decreases lactate production by cultured astrocytes. J Neurosci Res 87:2696–2708PubMedCrossRefGoogle Scholar
  121. 121.
    Xue M, Rabbani N, Thornalley PJ (2011) Glyoxalase in ageing. Semin Cell Dev Biol 22:293–301PubMedCrossRefGoogle Scholar
  122. 122.
    Tulpule K, Dringen R (2013) Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem 127:7–21PubMedGoogle Scholar
  123. 123.
    Hambsch B (2011) Altered glyoxalase 1 expression in psychiatric disorders: cause or consequence? Semin Cell Dev Biol 22:302–308PubMedCrossRefGoogle Scholar
  124. 124.
    Heck H, Casanova M (2004) The implausibility of leukemia induction by formaldehyde: a critical review of the biological evidence on distant-site toxicity. Regul Toxicol Pharmacol 40:92–106PubMedCrossRefGoogle Scholar
  125. 125.
    Tong Z, Han C, Luo W, Wang X, Li H, Luo H, Zhou J, Qi J, He R (2013) Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age (Dordr) 35:583–596CrossRefGoogle Scholar
  126. 126.
    Tulpule K, Dringen R (2012) Formate generated by cellular oxidation of formaldehyde accelerates the glycolytic flux in cultured astrocytes. Glia 60:582–593PubMedCrossRefGoogle Scholar
  127. 127.
    Tulpule K, Hohnholt MC, Dringen R (2013) Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. J Neurochem 125:260–272PubMedCrossRefGoogle Scholar
  128. 128.
    Sousa Silva M, Gomes RA, Ferreira AE, Ponces Freire A, Cordeiro C (2013) The glyoxalase pathway: the first hundred years… and beyond. Biochem J 453:1–15PubMedCrossRefGoogle Scholar
  129. 129.
    Belanger M, Yang J, Petit JM, Laroche T, Magistretti PJ, Allaman I (2011) Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci 31:18338–18352PubMedCrossRefGoogle Scholar
  130. 130.
    Pieroh P, Koch M, Wagner DC, Boltze J, Ehrlich A, Ghadban C, Hobusch C, Birkenmeier G, Dehghani F (2014) Temporal dynamics of glyoxalase 1 in secondary neuronal injury. PLoS ONE 9:e87364PubMedCentralPubMedCrossRefGoogle Scholar
  131. 131.
    Sharma R, Shakeel Ansari GA, Awasthi YC (2007) Physiological substrates of glutathione S-transferases. In: Awasthi YC (ed) Toxicology of glutathione transferases. CRC Taylor and Francis Group, Boca Raton, pp 179–205Google Scholar
  132. 132.
    Zimniak P (2007) Substrates and reaction mechanisms of glutathione transferases. In: Awasthi YC (ed) Toxicology of glutathione transferases. CRC Taylor and Francis Group, Boca Raton, pp 71–103Google Scholar
  133. 133.
    Board PG, Menon D (2013) Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta 1830:3267–3288PubMedCrossRefGoogle Scholar
  134. 134.
    Wu B, Dong D (2012) Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci 33:656–668PubMedCrossRefGoogle Scholar
  135. 135.
    Cammer W, Tansey F, Abramovitz M, Ishigaki S, Listowsky I (1989) Differential localization of glutathione-S-transferase Yp and Yb subunits in oligodendrocytes and astrocytes of rat brain. J Neurochem 52:876–883PubMedCrossRefGoogle Scholar
  136. 136.
    Abramovitz M, Homma H, Ishigaki S, Tansey F, Cammer W, Listowsky I (1988) Characterization and localization of glutathione-S-transferases in rat brain and binding of hormones, neurotransmitters, and drugs. J Neurochem 50:50–57PubMedCrossRefGoogle Scholar
  137. 137.
    Ahmed I, John A, Vijayasarathy C, Robin MA, Raza H (2002) Differential modulation of growth and glutathione metabolism in cultured rat astrocytes by 4-hydroxynonenal and green tea polyphenol, epigallocatechin-3-gallate. Neurotoxicology 23:289–300PubMedCrossRefGoogle Scholar
  138. 138.
    Johnson JA, el Barbary A, Kornguth SE, Brugge JF, Siegel FL (1993) Glutathione S-transferase isoenzymes in rat brain neurons and glia. J Neurosci 13:2013–2023PubMedGoogle Scholar
  139. 139.
    Huang J, Philbert MA (1995) Distribution of glutathione and glutathione-related enzyme systems in mitochondria and cytosol of cultured cerebellar astrocytes and granule cells. Brain Res 680:16–22PubMedCrossRefGoogle Scholar
  140. 140.
    Sagara J, Sugita Y (2001) Characterization of cytosolic glutathione S-transferase in cultured astrocytes. Brain Res 902:190–197PubMedCrossRefGoogle Scholar
  141. 141.
    Rohl C, Armbrust E, Kolbe K, Lucius R, Maser E, Venz S, Gulden M (2008) Activated microglia modulate astroglial enzymes involved in oxidative and inflammatory stress and increase the resistance of astrocytes to oxidative stress in vitro. Glia 56:1114–1126PubMedCrossRefGoogle Scholar
  142. 142.
    Ghosh T, Mustafa M, Kumar V, Datta SK, Bhatia MS, Sircar S, Banerjee BD (2012) A preliminary study on the influence of glutathione S transferase T1 (GSTT1) as a risk factor for late onset Alzheimer’s disease in North Indian population. Asian J Psychiatr 5:160–163PubMedCrossRefGoogle Scholar
  143. 143.
    Shang W, Liu WH, Zhao XH, Sun QJ, Bi JZ, Chi ZF (2008) Expressions of glutathione S-transferase alpha, mu, and pi in brains of medically intractable epileptic patients. BMC Neurosci 9:67PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Shi M, Bradner J, Bammler TK, Eaton DL, Zhang J, Ye Z, Wilson AM, Montine TJ, Pan C, Zhang J (2009) Identification of glutathione S-transferase pi as a protein involved in Parkinson disease progression. Am J Pathol 175:54–65PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Pinhel MA, Sado CL, Longo Gdos S, Gregorio ML, Amorim GS, Florim GM, Mazeti CM, Martins DP, Oliveira Fde N, Nakazone MA, Tognola WA, Souza DR (2013) Nullity of GSTT1/GSTM1 related to pesticides is associated with Parkinson’s disease. Arq Neuropsiquiatr 71:527–532PubMedCrossRefGoogle Scholar
  146. 146.
    Pizzurro DM, Dao K, Costa LG (2014) Astrocytes protect against diazinon- and diazoxon-induced inhibition of neurite outgrowth by regulating neuronal glutathione. Toxicology 318:59–68PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Gegg ME, Clark JB, Heales SJ (2005) Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity. Brain Res 1036:1–6PubMedCrossRefGoogle Scholar
  148. 148.
    Giordano G, Kavanagh TJ, Costa LG (2009) Mouse cerebellar astrocytes protect cerebellar granule neurons against toxicity of the polybrominated diphenyl ether (PBDE) mixture DE-71. Neurotoxicology 30:326–329PubMedCentralPubMedCrossRefGoogle Scholar
  149. 149.
    Tulpule K, Hohnholt MC, Hirrlinger J, Dringen R (2014) Primary cultures of rat astrocytes and neurons as model systems to study metabolism and metabolite export from brain cells. In: Hirrlinger J, Waagepetersen H (eds) Neuromethods 90: Brain Energy Metabolism. Springer, Heidelberg, pp 45–72Google Scholar
  150. 150.
    Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588PubMedCrossRefGoogle Scholar
  151. 151.
    Diaz Vivancos P, Wolff T, Markovic J, Pallardo FV, Foyer CH (2010) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169178Google Scholar
  152. 152.
    Ribas V, Garcia-Ruiz C, Fernadez-Checa JC (2014) Glutathione and mitochondria. Front Pharmacol 5:article 5Google Scholar
  153. 153.
    Kurz T, Eaton JW, Brunk UT (2010) Redox activity within the lysosomal compartment: implications for aging and apoptosis. Antioxid Redox Signal 13:511–523PubMedCrossRefGoogle Scholar
  154. 154.
    Huang J, Philbert MA (1996) Cellular responses of cultured cerebellar astrocytes to ethacrynic acid-induced perturbation of subcellular glutathione homeostasis. Brain Res 711:184–192PubMedCrossRefGoogle Scholar
  155. 155.
    Wilkins HM, Kirchhof D, Manning E, Joseph JW, Linseman DA (2013) Mitochondrial glutathione transport is a key determinant of neuronal susceptibility to oxidative and nitrosative stress. J Biol Chem 288:5091–5101PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Cacciatore I, Baldassarre L, Fornasari E, Mollica A, Pinnen F (2012) Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. Oxid Med Cell Longev 2012:240146PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Caito S, Yu Y, Aschner M (2013) Differential response to acrylonitrile toxicity in rat primary astrocytes and microglia. Neurotoxicology 37:93–99PubMedCrossRefGoogle Scholar
  158. 158.
    Wegrzynowicz M, Hilgier W, Dybel A, Oja SS, Saransaari P, Albrecht J (2007) Upregulation of cerebral cortical glutathione synthesis by ammonia in vivo and in cultured glial cells: the role of cystine uptake. Neurochem Int 50:883–889PubMedCrossRefGoogle Scholar
  159. 159.
    Dringen R, Hamprecht B, Drukarch B (1998) Anethole dithiolethione, a putative neuroprotectant, increases intracellular and extracellular glutathione levels during starvation of cultured astroglial cells. Naunyn Schmiedebergs Arch Pharmacol 358:616–622PubMedCrossRefGoogle Scholar
  160. 160.
    Li Y, Bao Y, Jiang B, Wang Z, Liu Y, Zhang C, An L (2008) Catalpol protects primary cultured astrocytes from in vitro ischemia-induced damage. Int J Dev Neurosci 26:309–317PubMedCrossRefGoogle Scholar
  161. 161.
    Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F (1999) 1,25-dihydroxyvitamin D3 regulates the synthesis of γ-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem 73:859–866PubMedCrossRefGoogle Scholar
  162. 162.
    Schmidt MM, Dringen R (2010) Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int 57:460–467PubMedCrossRefGoogle Scholar
  163. 163.
    Frade J, Pope S, Schmidt M, Dringen R, Barbosa R, Pocock J, Laranjinha J, Heales S (2008) Glutamate induces release of glutathione from cultured rat astrocytes—a possible neuroprotective mechanism? J Neurochem 105:1144–1152PubMedCrossRefGoogle Scholar
  164. 164.
    Im JY, Paik SG, Han PL (2006) Cadmium-induced astroglial death proceeds via glutathione depletion. J Neurosci Res 83:301–308PubMedCrossRefGoogle Scholar
  165. 165.
    Jia Z, Zhu H, Li Y, Misra HP (2009) Cruciferous nutraceutical 3H-1,2-dithiole-3-thione protects human primary astrocytes against neurocytotoxicity elicited by MPTP, MPP+, 6-OHDA, HNE and acrolein. Neurochem Res 34:1924–1934PubMedCrossRefGoogle Scholar
  166. 166.
    Wang L, Jiang H, Yin Z, Aschner M, Cai J (2009) Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicol Sci 107:135–143PubMedCentralPubMedCrossRefGoogle Scholar
  167. 167.
    Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2014) Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicol In Vitro 28:479–484PubMedCrossRefGoogle Scholar
  168. 168.
    Correa F, Mallard C, Nilsson M, Sandberg M (2012) Dual TNFα-induced effects on NRF2 mediated antioxidant defence in astrocyte-rich cultures: role of protein kinase activation. Neurochem Res 37:2842–2855PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    Dasgupta A, Das S, Sarkar PK (2007) Thyroid hormone promotes glutathione synthesis in astrocytes by up regulation of glutamate cysteine ligase through differential stimulation of its catalytic and modulator subunit mRNAs. Free Radic Biol Med 42:617–626PubMedCrossRefGoogle Scholar
  170. 170.
    Carrera MP, Antolin I, Martin V, Sainz RM, Mayo JC, Herrera F, Garcia-Santos G, Rodriguez C (2007) Antioxidants do not prevent acrylonitrile-induced toxicity. Toxicol Lett 169:236–244PubMedCrossRefGoogle Scholar
  171. 171.
    Ehrke E, Arend C, Dringen R (2014) 3-Bromopyruvate inhibits glycolysis, depletes cellular glutathione, and compromises the viability of cultured primary rat astrocytes. J Neurosci Res. doi: 10.1002/jnr.23474
  172. 172.
    Schmidt MM, Rohwedder A, Dringen R (2011) Effects of chlorinated acetates on the glutathione metabolism and on glycolysis of cultured astrocytes. Neurotox Res 19:628–637PubMedCrossRefGoogle Scholar
  173. 173.
    Clemedson C, Romert L, Odland L, Varnbo I, Walum E (1994) Biotransformation of carbon tetrachloride in cultured neurons and astrocytes. Toxicol In Vitro 8:145–152PubMedCrossRefGoogle Scholar
  174. 174.
    Kaur P, Aschner M, Syversen T (2007) Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress. Toxicology 230:164–177PubMedCrossRefGoogle Scholar
  175. 175.
    Liao SL, Ou YC, Chang CY, Chen WY, Kuan YH, Wang WY, Pan HC, Chen CJ (2013) Diethylmaleate and iodoacetate in combination caused profound cell death in astrocytes. J Neurochem 127:271–282PubMedCrossRefGoogle Scholar
  176. 176.
    O’Connor E, Devesa A, Garcia C, Puertes IR, Pellin A, Vina JR (1995) Biosynthesis and maintenance of GSH in primary astrocyte cultures: role of L-cystine and ascorbate. Brain Res 680:157–163PubMedCrossRefGoogle Scholar
  177. 177.
    Schmidt MM, Greb H, Koliwer-Brandl H, Kelm S, Dringen R (2010) 2-Deoxyribose deprives cultured astrocytes of their glutathione. Neurochem Res 35:1848–1856PubMedCrossRefGoogle Scholar
  178. 178.
    Schmidt MM, Dringen R (2009) Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front Neuroenerg 1:1–10CrossRefGoogle Scholar
  179. 179.
    Waak J, Dringen R (2006) Formation and rapid export of the monochlorobimane-glutathione conjugate in cultured rat astrocytes. Neurochem Res 31:1409–1416PubMedCrossRefGoogle Scholar
  180. 180.
    Ré DB, Boucraut J, Samuel D, Birman S, Kerkerian-Le Goff L, Had-Aissouni L (2003) Glutamate transport alteration triggers differentiation-state selective oxidative death of cultured astrocytes: a mechanism different from excitotoxicity depending on intracellular GSH contents. J Neurochem 85:1159–1170PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ralf Dringen
    • 1
    • 2
  • Maria Brandmann
    • 1
    • 2
  • Michaela C. Hohnholt
    • 3
  • Eva-Maria Blumrich
    • 1
    • 2
  1. 1.Center for Biomolecular Interactions BremenUniversity of BremenBremenGermany
  2. 2.Center for Environmental Research and Sustainable TechnologiesBremenGermany
  3. 3.Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations