Neurochemical Research

, Volume 39, Issue 9, pp 1797–1808 | Cite as

Linolenic Acid Provides Multi-cellular Protective Effects After Photothrombotic Cerebral Ischemia in Rats

  • Yang Liu
  • Qian Sun
  • Xiaojing Chen
  • Liang Jing
  • Wei Wang
  • Zhiyuan Yu
  • Guibing Zhang
  • Minjie Xie
Original Paper


Alpha-linolenic acid (LIN) has been shown to provide neuroprotective effects against cerebral ischemia. LIN is a potent activator of TREK-1 channel and LIN-induced neuroprotection disappears in Trek1−/− mice, suggesting that this channel is directly related to the LIN-induced resistance of brain against ischemia. However, the cellular mechanism underlying LIN induced neuroprotective effects after ischemia remains unclear. In this study, using a rat photochemical brain ischemia model, we investigated the effects of LIN on the protein abundance of astrocytic glutamate transporter and AQP4, microglia activation, cell apoptosis and behavioral recovery following ischemia. Administration of LIN rescued the protein abundance of astrocytic glutamate transporter GLT-1, decreased the protein abundance of AQP4 and brain edema, inhibited microglia activation, attenuated cell apoptosis and improved behavioral function recovery. Meanwhile, TREK-1 was widely distributed in the cortex and hippocampus, primarily localized in astrocytes and neurons. LIN could potentiate the TREK-1 mediated astrocytic passive conductance and hyperpolarize the membrane potential. Our results suggest that LIN provides multiple cellular neuroprotective effects in cerebral ischemia. TREK-1 may serve as a promising multi-mechanism therapeutic target for the treatment of stroke.


TREK-1 Cerebral ischemia Neurovascular unit Neuroprotection Polyunsaturated fatty acids 



The investigation was supported by the National Natural Science Foundation of China (30971007, 81371312, 81030021), Natural Science Foundation for outstanding young scholar of Hubei Province (2010CDA103) and National Basic Research Development Program (973 Program) of China (2011CB504403).


  1. 1.
    Heurteaux C, Laigle C, Blondeau N, Jarretou G, Lazdunski M (2006) Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 137:241–251PubMedCrossRefGoogle Scholar
  2. 2.
    Blondeau N, Petrault O, Manta S, Giordanengo V, Gounon P, Bordet R, Lazdunski M, Heurteaux C (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101:176–184PubMedCrossRefGoogle Scholar
  3. 3.
    Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2001) Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience 109:231–241CrossRefGoogle Scholar
  5. 5.
    Lang-Lazdunski L, Blondeau N, Jarretou G, Lazdunski M, Heurteaux C (2003) Linolenic acid prevents neuronal cell death and paraplegia after transient spinal cord ischemia in rats. J Vasc Surg 38:564–575PubMedCrossRefGoogle Scholar
  6. 6.
    Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kim D (2005) Physiology and pharmacology of two-pore domain potassium channels. Curr Pharm Des 11:2717–2736PubMedCrossRefGoogle Scholar
  8. 8.
    Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 17:3297–3308PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hervieu GJ, Cluderay JE, Gray CW, Green PJ, Ranson JL, Randall AD, Meadows HJ (2001) Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS. Neuroscience 103:899–919PubMedCrossRefGoogle Scholar
  10. 10.
    Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) Cns distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505PubMedGoogle Scholar
  11. 11.
    Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Moha ou Maati H, Bobak N, Gobel K, Langhauser F, Stegner D, Ehling P, Borsotto M, Pape HC, Nieswandt B, Kleinschnitz C, Heurteaux C, Galla HJ, Budde T, Wiendl H, Meuth SG (2013) Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 19:1161–1165Google Scholar
  12. 12.
    Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261PubMedCrossRefGoogle Scholar
  13. 13.
    Blondeau N, Lauritzen I, Widmann C, Lazdunski M, Heurteaux C (2002) A potent protective role of lysophospholipids against global cerebral ischemia and glutamate excitotoxicity in neuronal cultures. J Cereb Blood Flow Metab 22:821–834PubMedCrossRefGoogle Scholar
  14. 14.
    Qu WS, Wang YH, Ma JF, Tian DS, Zhang Q, Pan DJ, Yu ZY, Xie MJ, Wang JP, Wang W (2011) Galectin-1 attenuates astrogliosis-associated injuries and improves recovery of rats following focal cerebral ischemia. J Neurochem 116:217–226PubMedCrossRefGoogle Scholar
  15. 15.
    Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504PubMedCrossRefGoogle Scholar
  16. 16.
    Schabitz WR, Berger C, Kollmar R, Seitz M, Tanay E, Kiessling M, Schwab S, Sommer C (2004) Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 35:992–997PubMedCrossRefGoogle Scholar
  17. 17.
    Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205PubMedCrossRefGoogle Scholar
  18. 18.
    Takano T, Oberheim N, Cotrina ML, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40:S8–S12PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702PubMedCrossRefGoogle Scholar
  20. 20.
    Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med 6:159–163PubMedCrossRefGoogle Scholar
  21. 21.
    Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276:13–26PubMedCrossRefGoogle Scholar
  22. 22.
    Yenari MA, Kauppinen TM, Swanson RA (2010) Microglial activation in stroke: therapeutic targets. Neurotherapeutics 7:378–391PubMedCrossRefGoogle Scholar
  23. 23.
    Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H (2009) TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 29:8551–8564PubMedCrossRefGoogle Scholar
  24. 24.
    Guo S, Lo EH (2009) Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40:S4–S7PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhang L, Zhang ZG, Chopp M (2012) The neurovascular unit and combination treatment strategies for stroke. Trends Pharmacol Sci 33:415–422PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chu KC, Chiu CD, Hsu TT, Hsieh YM, Huang YY, Lien CC (2010) Functional identification of an outwardly rectifying pH- and anesthetic-sensitive leak K(+) conductance in hippocampal astrocytes. Eur J Neurosci 32:725–735PubMedCrossRefGoogle Scholar
  27. 27.
    Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151:25–40PubMedCrossRefGoogle Scholar
  28. 28.
    Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neuroche 107:589–601CrossRefGoogle Scholar
  29. 29.
    Buckler KJ, Honore E (2005) The lipid-activated two-pore domain K+ channel TREK-1 is resistant to hypoxia: implication for ischaemic neuroprotection. J Physiol 562:213–222PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27:4253–4260PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Olsen ML, Campbell SC, McFerrin MB, Floyd CL, Sontheimer H (2010) Spinal cord injury causes a wide-spread, persistent loss of Kir4.1 and glutamate transporter 1: benefit of 17 beta-oestradiol treatment. Brain 133:1013–1025PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kucheryavykh YV, Kucheryavykh LY, Nichols CG, Maldonado HM, Baksi K, Reichenbach A, Skatchkov SN, Eaton MJ (2007) Downregulation of Kir4.1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes. Glia 55:274–281PubMedCrossRefGoogle Scholar
  33. 33.
    Wu X, Liu Y, Chen X, Sun Q, Tang R, Wang W, Yu Z, Xie M (2013) Involvement of TREK-1 activity in astrocyte function and neuroprotection under simulated ischemia conditions. J Mol Neurosci 49:499–506PubMedCrossRefGoogle Scholar
  34. 34.
    Volterra A, Trotti D, Cassutti P, Tromba C, Galimberti R, Lecchi P, Racagni G (1992) A role for the arachidonic acid cascade in fast synaptic modulation: ion channels and transmitter uptake systems as target proteins. Adv Exp Med Biol 318:147–158PubMedCrossRefGoogle Scholar
  35. 35.
    Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with Kir4.1. Neuroscience 129:905–913PubMedCrossRefGoogle Scholar
  36. 36.
    Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26:47–54PubMedCrossRefGoogle Scholar
  37. 37.
    Strohschein S, Huttmann K, Gabriel S, Binder DK, Heinemann U, Steinhauser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973–980PubMedCrossRefGoogle Scholar
  38. 38.
    Franks NP, Honore E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmaco Sci 25:601–608CrossRefGoogle Scholar
  39. 39.
    Benoit E, Escande D (1991) Riluzole specifically blocks inactivated Na channels in myelinated nerve fibre. Pflugers Arch 419:603–609PubMedCrossRefGoogle Scholar
  40. 40.
    Hebert T, Drapeau P, Pradier L, Dunn RJ (1994) Block of the rat brain IIA sodium channel alpha subunit by the neuroprotective drug riluzole. Mol Pharmacol 45:1055–1060PubMedGoogle Scholar
  41. 41.
    Huang CS, Song JH, Nagata K, Yeh JZ, Narahashi T (1997) Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons. J Pharmacol Exp Ther 282:1280–1290PubMedGoogle Scholar
  42. 42.
    Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311PubMedCrossRefGoogle Scholar
  43. 43.
    Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, Mori Y, Tonchev AB, Yamashima T (2007) Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci Res 58:394–401PubMedCrossRefGoogle Scholar
  44. 44.
    Duprat F, Lesage F, Patel AJ, Fink M, Romey G, Lazdunski M (2000) The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. Mol Pharmacol 57:906–912PubMedGoogle Scholar
  45. 45.
    Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793–F801PubMedGoogle Scholar
  46. 46.
    Patel AJ, Honore E (2001) Molecular physiology of oxygen-sensitive potassium channels. Eur Respir J 18:221–227PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yang Liu
    • 1
  • Qian Sun
    • 1
  • Xiaojing Chen
    • 1
  • Liang Jing
    • 1
  • Wei Wang
    • 1
    • 2
  • Zhiyuan Yu
    • 1
  • Guibing Zhang
    • 3
  • Minjie Xie
    • 1
    • 2
  1. 1.Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Key Laboratory of Neurological Diseases (HUST)Ministry of Education of ChinaWuhanPeople’s Republic of China
  3. 3.Department of NeurologyXiangyang Hospital Affiliated to Hubei University of MedicineXiangyangPeople’s Republic of China

Personalised recommendations